
- •Глава I случайные события и вероятности
- •§ 1.1. Случайные события. Классическое определение вероятности
- •2. Алгебра событий.
- •4. Применение элементов комбинаторики к нахождению вероятностей.
- •§ 1.2. Геометрическая вероятность. Статистическое и аксиоматическое определения вероятности
- •§ 1.3. Свойства вероятности
- •1. Теорема сложения вероятностей несовместимых событий
- •2. Теорема умножения вероятностей.
- •4. Формула полной вероятности.
- •§ 1.4. Случайные события в физике, химии, биологии
- •Глава 11
- •§ 2.1. Дискретные случайные величины
- •§ 2.2. Математическое ожидание дискретной случайной величины
- •2. Свойства математического ожидания дискретной случайной величины.
- •1. Математическое ожидание* постоянной величины с равно этой величине.
- •3. Математическое ожидание суммы двух случайных величин X и y равно сумме их математических ожиданий:
- •4. Математическое ожидание произведения двух независимых случайных величин X и y равно произведению их математических ожиданий:
- •5. Математическое ожидание разности двух случайных величин X и y равно разности их математических ожиданий:
- •§ 2.3. Дисперсия дискретной случайной величины
- •2. Свойства дисперсии дискретной случайной величины.
- •1. Дисперсия дискретной случайной величины X равна разности между математическим ожиданием квадрата величины X и квадратом ее математического ожидания:
- •3. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат:
- •4. Дисперсия суммы двух независимых случайных величин X и y равна сумме дисперсий этих величин:
- •5. Дисперсия разности двух независимых случайных величин X и y равна сумме их дисперсий:
- •3. Среднее квадратическое отклонение.
- •4. Понятие o моментах распределения.
- •2.8. Закон больших чисел
- •1.Неравенство Чебышева.
- •2.6 Математическое ожидания и дисперсия непрерывной случайной величины
- •2.7 Основные законы распределения непрерывных случайных величин
- •§ 2.9. Предельные теоремы теории вероятностей
- •Двумерные случайные величины
- •§ 3.1. Понятие о двумерной случайной величине
- •§ 3.2. Функция распределения двумерной случайной величины
- •Определение функции распределения двумерной случайной величины и ее свойства.
- •2. Вероятности попадания случайной точки в полуполосу и прямоугольник.
- •§ 3.3. Плотность вероятности двумерной случайной величины
- •Двумерная плотность вероятности и ее свойства.
- •2. Отыскание функции распределения двумерной случайной величины по известной двумерной плотности вероятности.
- •§ 3.4. Нахождение плотностей вероятности составляющих двумерной случайной величины
- •§ 3.5. Условные законы распределения составляющих двумерных дискретных и непрерывных случайных величин
- •1. Условные законы распределения составляющих двумерных дискретных случайных величин.
- •2. Условные законы распределения составляющих двумерных непрерывных случайных величин.
- •§ 3.6. Независимость случайных величин
- •§ 3.7. Элементы теории корреляции
- •2. Корреляционный момент и коэффициент корреляции.
- •1) Если X и y — независимые случайные величины, то коэффициент корреляции равен нулю.
- •2)Абсолютная величина коэффициента корреляции не превосходит единицы:
- •4. Нормальное распределение двумерной случайной величины.
- •Упражнения
- •Глава IV элементы математической статистики
- •§ 4.1. Генеральная совокупность и выборка
- •2. Статистическое распределение выборки. Полигон. Гистограмма.
- •§ 4.2. Оценки параметров генеральной совокупности по ее выборке
- •§ 4.3. Доверительные интервалы для параметров нормального распределения
- •3. Доверительный интервал для математического ожидания при неизвестном σ.
- •Дополнительные упражнения
Глава 11
СЛУЧАЙНЫЕ ВЕЛИЧИНЫ
§ 2.1. Дискретные случайные величины
1. Понятие ”случайные величины”.
О п р е дел е н и е 1. Случайной величиной называется переменная величина, которая в зависимости от исхода испытания случайно принимает одно значение из множества всезможных значений.
П р и м е р ы. 1) Число очков, выпавших при однократном бросании игральной кости, есть случайная величина, она может принять одно из значений: 1, 2, 3, 4, 5, 6;
2) прирост массы домашнего животного за месяц есть случайная величина, которая может иметь значение из некоторого число- вого промежутка;
3) число родившихся мальчиков среди пяти новорожденных есть случайная величина, которая может принять значения 0, 1, 2, 3, 4, 5;
4) расстояние, которое пролетит снаряд при выстреле из орудия, есть случайная величина, возможные значения которой принадлежат некоторому промежутку.
Случайные величины обычно обозначают прописными буквами Х, У, 2 а их возможные значения — соответствующими строчными буквами х, у, . Например, если случайная величина Х имеет три возможных значения, то они будут обозначены так:
х1, х2, х3.
О п р е д е л е н и е 2. Случайная величина, принимающая различные значения, которые можно записать в виде конечной или бесконечной последовательности, называется дискретной случайной величиной.
Рассмотрим дискретные случайные величины, множество допустимых значений которых конечно случайные величины из примеров 1) и 3) дискретные.
О п р е д е л е н и е 3. Случайная величина, которая может принимать все значения из некоторого числового промежутка, называется непрерывной случайной величиной.
Случайные величины из примеров 2) и 4) являются непрерывными.
О п р е д е л е н и е 4. Под суммой (произведением) случайных величин Х и У понимают случайную величину 7=Х+ У (7= ХУ), возможные значения которой состоят из сумм (произведений) каждого возможного значения величины X и каждого возможного значения величины Y.
2. Законы распределения дискретных случайных величин. Рассмотрим дискретную случайную величину X с конечным множеством возможных значений. Величина X считается заданной, если перечислены все ее возможные значения, а также вероятности, с которыми величина X может принимать эти значения. Указанный перечень всех ее возможных значений и их вероятностей называется законом распределения дискретной случайной величины. Закон распределения дискретной случайной величины может быть задан с помощью таблицы:
X |
х1 |
х2 |
х3 |
… |
хn - 1 |
хn |
p |
р1 |
р2 |
р3 |
… |
pn - 1 |
pn |
В верхней строке выписываются все возможные значения х1, х2, ..., хn величины X, в нижней строке выписываются вероятности р1, р2, ..., pn значений х1, х2, ..., хn. Читается таблица следующим образом: случайная величина X может принимать значения хi с вероятностями рi (i = 1, 2, ..., n).
Так как события X = хi (i = 1, 2, ..., n) образуют полную группу несовместимых событий, то
р1 + р2 + ... + pn = 1
П р и м е р. В денежной лотерее раньше разыгрывались: 1 выигрыш в 1000 р., 10 выигрышей по 100 р. и 100 выигрышей по 1 р. при общем числе билетов 10 000. Найдем закон распределения случайного выигрыша X для владельца одного лотерейного билета.
Здесь возможные значения для X есть: x1 = 0, х2 = 1, х3 = 100, х4 = 1000. Вероятности их будут: p2 = 0,01, р3 = 0,001, р4 = 0,0001, p1= 1 - 0,01 - 0,001 - 0,0001 = 0,9889. Следовательно, закон распределения выигрыша X может быть задан таблицей:
X |
0 |
1 |
100 |
1000 |
p |
0,9889 |
0,01 |
0,001 |
0,0001 |
В заключение отметим так называемую «механическую» интерпретацию представленной таблицы. Представим себе, что некоторая масса, равная единице, распределена по оси абсцисс так, что в п отдельных точках х1, х2, ..., хn сосредоточены соответственно массы р1, р2, ..., pn. Тогда эта таблица описывает систему материальных точек, размещенных на оси абсцисс.