
- •Глава I случайные события и вероятности
- •§ 1.1. Случайные события. Классическое определение вероятности
- •2. Алгебра событий.
- •4. Применение элементов комбинаторики к нахождению вероятностей.
- •§ 1.2. Геометрическая вероятность. Статистическое и аксиоматическое определения вероятности
- •§ 1.3. Свойства вероятности
- •1. Теорема сложения вероятностей несовместимых событий
- •2. Теорема умножения вероятностей.
- •4. Формула полной вероятности.
- •§ 1.4. Случайные события в физике, химии, биологии
- •Глава 11
- •§ 2.1. Дискретные случайные величины
- •§ 2.2. Математическое ожидание дискретной случайной величины
- •2. Свойства математического ожидания дискретной случайной величины.
- •1. Математическое ожидание* постоянной величины с равно этой величине.
- •3. Математическое ожидание суммы двух случайных величин X и y равно сумме их математических ожиданий:
- •4. Математическое ожидание произведения двух независимых случайных величин X и y равно произведению их математических ожиданий:
- •5. Математическое ожидание разности двух случайных величин X и y равно разности их математических ожиданий:
- •§ 2.3. Дисперсия дискретной случайной величины
- •2. Свойства дисперсии дискретной случайной величины.
- •1. Дисперсия дискретной случайной величины X равна разности между математическим ожиданием квадрата величины X и квадратом ее математического ожидания:
- •3. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат:
- •4. Дисперсия суммы двух независимых случайных величин X и y равна сумме дисперсий этих величин:
- •5. Дисперсия разности двух независимых случайных величин X и y равна сумме их дисперсий:
- •3. Среднее квадратическое отклонение.
- •4. Понятие o моментах распределения.
- •2.8. Закон больших чисел
- •1.Неравенство Чебышева.
- •2.6 Математическое ожидания и дисперсия непрерывной случайной величины
- •2.7 Основные законы распределения непрерывных случайных величин
- •§ 2.9. Предельные теоремы теории вероятностей
- •Двумерные случайные величины
- •§ 3.1. Понятие о двумерной случайной величине
- •§ 3.2. Функция распределения двумерной случайной величины
- •Определение функции распределения двумерной случайной величины и ее свойства.
- •2. Вероятности попадания случайной точки в полуполосу и прямоугольник.
- •§ 3.3. Плотность вероятности двумерной случайной величины
- •Двумерная плотность вероятности и ее свойства.
- •2. Отыскание функции распределения двумерной случайной величины по известной двумерной плотности вероятности.
- •§ 3.4. Нахождение плотностей вероятности составляющих двумерной случайной величины
- •§ 3.5. Условные законы распределения составляющих двумерных дискретных и непрерывных случайных величин
- •1. Условные законы распределения составляющих двумерных дискретных случайных величин.
- •2. Условные законы распределения составляющих двумерных непрерывных случайных величин.
- •§ 3.6. Независимость случайных величин
- •§ 3.7. Элементы теории корреляции
- •2. Корреляционный момент и коэффициент корреляции.
- •1) Если X и y — независимые случайные величины, то коэффициент корреляции равен нулю.
- •2)Абсолютная величина коэффициента корреляции не превосходит единицы:
- •4. Нормальное распределение двумерной случайной величины.
- •Упражнения
- •Глава IV элементы математической статистики
- •§ 4.1. Генеральная совокупность и выборка
- •2. Статистическое распределение выборки. Полигон. Гистограмма.
- •§ 4.2. Оценки параметров генеральной совокупности по ее выборке
- •§ 4.3. Доверительные интервалы для параметров нормального распределения
- •3. Доверительный интервал для математического ожидания при неизвестном σ.
- •Дополнительные упражнения
Глава IV элементы математической статистики
§ 4.1. Генеральная совокупность и выборка
Приступим к изучению элементов математической статистики, в которой разрабатываются научно обоснованные методы сбора статистических данных и их обработки.
1. Генеральная совокупность и выборка. Пусть требуется изучить множество однородных объектов (это множество называют статистической совокупностью) относительно некоторого качественного или количественного признака, характеризующего эти объекты. Например, если имеется партия деталей, то качественным признаком может служить соответствие детали стандартам, а количественным — контролируемый размер детали.
Лучше всего осуществить сплошное обследование, т. е. изучить каждый объект. Однако в большинстве случаев по разным причинам это сделать невозможно. Препятствовать сплошному обследованию может большое число объектов, их недоступность и т.п. Если, например, нужно знать среднюю глубину воронки при взрыве снаряда из опытной партии, то, проводя сплошное обследование, мы должны будем уничтожить всю партию.
Если сплошное обследование невозможно, то из всей совокупности выбирают для изучения часть объектов.
Статистическая совокупность, из которой отбирают часть объектов, называется генеральной совокупностью. Множество объектов, случайно отобранных из генеральной совокупности, называется выборкой.
Число объектов генеральной совокупности и выборки называется соответственно объемом генеральной совокупности и объемом выборки.
Пример. Плоды одного дерева (200 шт.) обследуют на наличие специфического для данного сорта вкуса. Для этого отбирают 10 шт. Здесь 200 — объем генеральной совокупности, а 10 - объем выборки.
Если выборку отбирают по одному объекту, который обследуют и снова возвращают в генеральную совокупность, то выборка называется повторной. Если объекты выборки уже не возвращаются в генеральную совокупность, то выборка называется бесповторной. На практике чаще используется бесповторная выборка. Если объем выборки составляет небольшую долю объема генеральной совокупности, то разница между повторной и бесповторной выборками незначительна.
Свойства объектов выборки должны правильно отражать свойства объектов генеральной совокупности, или, как говорят, выборка должна быть репрезентативной (представительной). Считается, что выборка репрезентативна, если все объекты генеральной совокупности имеют одинаковую вероятность попасть в выборку, т. е. выбор осуществляется случайно. Например, для того чтобы оценить будущий урожай, можно сделать выборку из генеральной совокупности еще не созревших плодов и исследовать их характеристики (массу, качество и пр.). Если вся выборка будет взята с одного дерева, то она не будет репрезентативной. Репрезентативная выборка должна состоять из случайно выбранных плодов со случайно выбранных деревьев.
2. Статистическое распределение выборки. Полигон. Гистограмма.
Пусть
из генеральной совокупности извлечена
выборка, причем х1
наблюдалось
n1
раз,
х2—
п2
раз,
..., хk
— пk
раз
и n1
+ п2
+...
+ nk
=
n
—
объем выборки. Наблюдаемые значения
х1,
х2,
...,
хk
называются
вариантами,
а
последовательность вариант, записанная
в возрастающем
порядке,— вариационным
рядом. Числа
наблюдений n1,n2,
..., пk
называют
частотами, а их отношения к объему
выборки
,
,
…,
- относительными
частотами. Отметим,
что сумма
относительных частот равна единице:
.
Статистическим распределением выборки называют перечень вариант и соответствующих им частот или относительных частот. Статистическое распределение можно задать также в виде последовательности интервалов и соответствующих им частот (непрерывное распределение). В качестве частоты, соответствующей интервалу, принимают сумму частот вариант, попавших в этот интервал.
Заметим, что в теории вероятностей под распределением понимают соответствие между возможными значениями случайной величины и их вероятностями, а в математической статистике — соответствие между наблюдаемыми вариантами и их частотами или относительными частотами.
Пример 1. Перейдем от частот к относительным частотам в следующем распределении выборки объема n = 20:
Варианта хi |
2 |
б |
12 |
Частота пi |
3 |
10 |
7 |
Найдем относительные частоты:
Поэтому получаем следующее распределение:
Варианта хi |
2 |
6 |
12 |
Относительная частота pi* |
0,15 |
0,50 |
0,35 |
Для графического изображения статистического распределения используются полигоны и гистограммы.
Для построения полигона в декартовых координатах на оси Ох откладывают значения вариант xi, на оси Оy — значения частот пi (относительных частот рi*).
Пример 2. Рис. 14 представляет собой полигон следующего распределения:
Варианта хi |
1 |
2 |
3 |
5 |
Относительная частота рi* |
0,4 |
0,2 |
0,3 |
0,1 |
Полигоном
обычно пользуются в случае небольшого
количества вариант. В случае большого
количества вариант и в случае непрерывного
распределения признака чаще строят
гистограммы. Для этого интервал,
в котором заключены все наблюдаемые
значения признака,
разбивают на несколько частичных
интервалов шириной h
и находят для каждого частичного
интервала пi
— сумму
частот вариант, попавших
в i
-й
интервал. Затем на этих интервалах как
на основаниях
строят прямоугольники с высотами
(или
,
где
n
—объем выборки).
Площадь i
-го
частичного прямоугольника равна
У
7-6-5-4-3-2-1-
О 5 10 15 20 25 30 35 40 x
Рис. 15
(или
).
Следовательно,
площадь гистограммы
равна сумме
всех частот (или относительных частот),
т. е. объему выборки (или
единице).
П р и м е р 3. Рис. 15 показывает гистограмму непрерывного распределения объема n = 100, заданного следующей таблицей:
Частичный интервал, h |
Сумма частот вариант частичного интервала, ni |
|
5-10 |
4 |
0,8 |
10-15 |
6 |
1.2 |
15-20 |
16 |
3,2 |
20-25 |
36 |
7,2 |
25-30 |
24 |
4.8 |
30-35 |
10 |
2.0 |
35-40 |
4 |
0,8 |