Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Російська версія книги з теорії ймовірності.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
4.16 Mб
Скачать

2. Корреляционный момент и коэффициент корреляции.

Для характеристики корреляционной зависимости между вели­чинами используются коррекляционный момент и коэффициент корреляции.

О п р е д е л е н и е 2. Корреляционным моментом µxy случайных ве­личин X и Y называют математическое ожидание произведения отклонений этих величин

Для вычисления корреляционного момента дискретных величин используется выражение

(3.12)

а для непрерывных – выражение

(3.13)

З а м е ч а н и е. Корреляционный момент µxy может быть пере­писан в виде

(3.14)

Действительно, используя свойства математического ожидания (см. §§ 2.2; 2.6), имеем

Т е о р е м а. Корреляционный момент двух независимых случайных величин X и Y равен нулю.

Д о к а з а т е л ь с т в о. Согласно замечанию

а так как Х и Y независимые случайные величины, то (см. §§ 2.2; 2.6)

и, значит, µxy=0.

Из определения корреляционного момента следует, что он имеет размерность, равную произведению размерностей величин X и Y, т.е. его величина зависит от единиц измерения случайных величин. Поэтому для одних и тех же двух величин величина корреляцион­ного момента может иметь различные значения в зависимости от того, в каких единицах были измерены величины. Для устранения этого недостатка условились за меру связи (зависимости) двух слу­чайных величин X и Y принять безразмерную величину

(3.15)

где σх=σ(Х), σy=σ(Y), называемую коэффициентом корреляции.

П р и м е р 1. Пусть двумерная дискретная случайная величи­на (X,Y) задана законом распределения:

x\y

1

2

3

1

1\18

1\12

1\36

2

1\9

1\6

1\18

3

1\6

1\4

1\12

Найдем корреляционный момент и коэффициент корреляции слу­чайных величин X и Y.

Р е ш е н и е. Сложив вероятности по строкам, получим вероят­ности возможных значений X:

Отсюда закон распределения X:

X

1

2

3

p

1\6

1\3

1\2

и, значит,

Сложив же вероятности по столбцам, найдем вероятности воз­можных значений Y:

Отсюда закон распределения Y:

Y

1

2

3

p

1\3

1\2

1\6

и, значит,

Следовательно,

Таким образом, коэффициент корреляции

Т е о р е м а. Абсолютная величина корреляционного момента двух случайных величин не превосходит произведения их средних квадратических отклонений:

Д о к а з а т е л ь с т в о. Введя в рассмотрение случайную величи­ну где найдем ее дисперсию. Имеем

(любая дисперсия неотрицательна). Отсюда

Введя случайную величину , аналогично найдем

В результате имеем

или

(3.16)

О п р е д е л е н и е 2. Случайные величины X и Y называются некоррелированными, если = 0, и коррелированными, если

П р и м е р 1. Независимые случайные величины Х и Y являются некоррелированными, так как в силу соотношения (3.12) = 0.

П р и м е р 2. Пусть случайные величины Х и Y связаны линей­ной зависимостью Найдем коэффициент корреля­ции. Имеем:

откуда

Поэтому

Таким образом, коэффициент корреляции случайных величин, свя­занных линейной зависимостью, равен ±1 (точнее, =1, если А>0 и =-1, если А<0).

Отметим некоторые свойства коэффициента корреляции.

Из примера 1 следует: