Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
12-22_Perekh_prots.doc
Скачиваний:
2
Добавлен:
01.05.2025
Размер:
1.88 Mб
Скачать

18. Переходные процессы. Подключение r -цепи к источнику постоянного напряжения

1 . Запишем правило коммутации для цепи на рис. 4.8

.

2. Получим дифференциальное уравнение цепи

,

+

, ,

.

Характеристическое уравнение цепи ,

корень которого .

Постоянная времени .

3. Запишем полное решение .

Здесь свободная составляющая также включает только одну экспоненту, поскольку цепь имеет первый порядок.

4 . Подставив в полное решение t = 0+, определим постоянную интегрирования на основании правил коммутации .

Таким образом, окончательный результат имеет вид

.

Ток в цепи .

Графики изменения и представлены на рис. 4.9. Значение тока, содержащее лишь свободную составляющую, максимально в начальный момент времени, когда оно скачком достигает значение , и все напряжение источника приложено к резистору. По мере зарядки конденсатора напряжение на нем повышается, что ведет к соответственному уменьшению тока в цепи.

19. Переходные процессы. Подключение r -цепи к источнику постоянного напряжения

1. Запишем правило коммутации для цепи на рис. 4.10

.

2. Получим дифференциальное уравнение цепи

,

,

характеристическое уравнение

.

Корень характеристического уравнения и постоянная времени соответственно

, .

3. Полное решение имеет вид:

.

4. Подставив в iL(t) t = 0+ на основании правила коммутации определим постоянную интегрирования

.

Таким образом,

.

Напряжение на индуктивности

. Графики изменения uL(t), iL(t) приведены на рис. 4.11.

4 .2.5.4. Подключение rc-цепи к источнику гармонического напряжения

Рассмотрим случай, когда в цепи (рис. 4.12) действует источник синусоидальной ЭДС

.

Здесь – фаза включения, т.к. она определяется моментом срабатывания коммутатора. Интуитивно следует ожидать влияние на качественную и количественную картину протекания переходного процесса.

Порядок расчета переходных процессов, описанный выше, не претерпевает никаких изменений.

1. Запишем правило коммутации

.

2. Дифференциальное уравнение и соответствующее ему характеристическое уравнение:

.

Корень характеристического уравнения

.

3. Полное решение для рассматриваемой цепи первого порядка

.

4. Расчет принужденной составляющей произведем символическим методом

;

;

;

.

5. Для расчета постоянной интегрирования запишем полное решение для момента t = 0+

;

.

В соответствии с правилом коммутации

;

Таким образом,

или

.

Определим

;

Оба выражения для uC и iC в общем случае имеют периодическую принужденную и апериодическую свободную составляющие. При этом характер переходного процесса существенно зависит от двух факторов – начальной фазы напряжения источника в момент включения и соотношения параметров цепи и R.

Исследуем ожидаемое влияние фазы включения источника на переходный режим

1) Пусть , тогда . Поскольку cos 0 = 1, получим

.

а) исследование кривой напряжения (рис. 4.13) наглядно демонстрирует, что максимальное напряжение в переходном режиме ограничено .

б) исследование кривой тока (рис. 4.14).

Максимальное значение тока в переходном режиме зависит от соотношения и R и может превышать Imпр в несколько раз. Однако этот начальный всплеск тока является кратковременным.

2 ) В случае, если , поскольку , получим

Т аким образом, в данном случае в цепи переходный процесс не н

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]