
- •Теорія ймовірностей та математична статистика.
- •Тема 1. Предмет, методи, основні задачі та поняття теорії ймовірностей.
- •Тема 7. Закони великих чисел та центральна гранична теорема
- •Тема 8. Основні поняття математичної статистики: вибіркові спостереження та вибіркові оцінки
- •Тема 9. Методи параметричного та непараметричного оцінювання параметрів
- •Тема10. Методи перевірки статистичних гіпотез
- •§1. Випадкові події. Класифікація подій
- •§2. Операції над подіями
- •§3. Частота події і її властивості
- •§4. Ймовірність події
- •§5. Аксіоматична побудова теорії ймовірності
- •§1. Операції над ймовірностями
- •Ймовірність об’єднання несумісних подій
- •2. Ймовірність перетину подій
- •Ймовірність об’єднання сумісних подій
- •§2. Формула повної ймовірності. Формула Байеса
- •§1. Схема Бернуллі
- •§2. Наймовірніше число успіхів у схемі Бернуллі
- •§3. Граничні теореми теорії ймовірності
- •1. Локальна теорема Муавра-Лапласа
- •2. Інтегральна ознака Муавра-Лапласа
- •3. Гранична теорема Пуассона
- •§1. Випадкові величини та їх розподіл
- •1. Дискретна випадкова величина та її закон розподілу ймовірностей
- •Неперервна випадкова величина та її закони розподілу
- •3. Диференціальна функція розподілу
- •§2. Числові характеристики випадкових величин
- •Дисперсія і середнє квадратичне відхилення.
- •§1. Закони розподілу дискретних випадкових величин
- •§2. Закони розподілу неперервної випадкової величини
- •§3. Закони розподілу, зв’язані з нормальним
- •Лекція 6. Закон великих чисел
- •§1. Нерівність Чебишева
- •§2. Теорема Чебишева
- •§3. Теорема Бернуллі
- •§4. Центральна гранична теорема Ляпунова
- •§1. Статистичний розподіл вибірки та його геометричне зображення
- •§2. Числові характеристики вибірки
- •Лекція 8. Статистичні оцінки параметрів генеральної сукупності
- •§1. Точкові статистичні оцінки параметрів
- •Розглянемо наступну загальну задачу. Маємо випадкову величину х, закон розподілу якої має невідомий параметр а. Потрібно на основі даних вибірки знайти добру оцінку параметру а.
- •§2. Інтервальні статистичні оцінки параметрів
- •Довірчі інтервали для оцінки математичного
- •Довірчі інтервали для математичного сподівання
- •§3. Довірчий інтервал для оцінки середнього квадратичного відхилення
- •Гіпотез
- •§ 2. Критична область. Загальна методика побудови критичних областей
- •§ 3. Перевірка правдивості статистичних гіпотез про рівність двох генеральних середніх.
- •§4. Перевірка гіпотези про нормальний закон розподілу генеральної сукупності. Критерій узгодженості Пірсона
- •§5. Порівняння двох середніх генеральних сукупностей,
- •§1. Рівняння парної регресії
- •§2. Вибірковий коефіцієнт кореляції та його властивості,
- •§1. Багатофакторна регресія
- •§2. Нелінійна регресія
- •Контрольна робота
- •Контрольна робота
§1. Багатофакторна регресія
На практиці економічний процес змінюється під впливом багатьох різноманітних факторів, які треба вміти виявити та оцінити. Якщо розглянути приклад з лк 30 , то аналіз обсягу продажу на фірмі було б спрощено допускати тільки від витрат на рекламу. На обсяги продажу впливає частина ринку, яку утримує фірма, якість продукції, імідж марки продукції, середня заробітна плата населення у регіонах продажу та інші фактори.
Узагальнена багатофакторна лінійна регресійна модель може бути записана у вигляді:
у = а0+а1х1+а2х2+…+архр+ , (1)
де у – залежна змінна, х1, х2,…хp – незалежні змінні (фактори) а0, …ар – параметри моделі, які потрібно оцінити, - не спостережувана випадкова величина.
Узагальнена регресійна модель – це модель, яка дійсна для всієї генеральної сукупності. Невідомі параметри узагальненої моделі є константами, а випадкова величина – не спостережувана, і можна лише зробити припущення відповідно до закону її розподілу. На відміну від узагальненої регресійної моделі, вибіркова модель будується для певної вибірки; невідомі параметри вибіркової моделі є випадковими величинами, математичне сподівання яких дорівнює параметрам узагальненої моделі.
Відповідна вибіркова лінійна багатофакторна модель має вигляд:
ŷ = b0+b1х1+…+bрхр+e , (2)
де ŷ – залежна змінна, х1…хр – незалежні змінні, b0, b1…bр – оцінки невідомих параметрів узагальненої моделі, е – випадкова величина (помилка).
Нехай
дано ряд спостережень за залежною
змінною
та за незалежними змінними, або факторами:
.
На підставі цих спостережень будується
лінійна вибіркова багатофакторна
модель, а саме – у вигляді (2).
Як і у випадку простої лінійної регресії, знаходять невідомі параметри за методом найменших квадратів, тобто мінімізують суму квадратів відхилень фактичних даних від теоретичних:
тобто
.
Звідки отримується нормальна система рівнянь:
(3)
Розв’язуючи систему рівнянь (3) щодо b0, b1…bр одержують рівняння множинної регресії.
Лінійну багатофакторну модель, як і основні проблеми регресійного аналізу, зручно розглядати за допомогою матриць. Для цього введемо матриці:
Тоді систему (2) можна записати у матричній формі
,
(4)
а систему (3) можна записати у такому матричному вигляді:
,
(5)
або ХТХВ =XTY Якщо обернена матриця ХТХ існує (ХТХ)-1, то, помноживши на неї останню рівність, отримаємо:
(ХТХ)-1(ХТХ) В = (ХТХ)-1 ХТY, або остаточно:
(6)
Рівняння (6) є фундаментальним результатом для визначення невідомих вибіркових параметрів у матричному вигляді.
§2. Нелінійна регресія
Якщо
графік регресії
або
зображується кривою лінією, то кореляцію
називають криволінійною (нелінійною).
Наприклад, квадратичні функції
використовуються для опису дуже широкого
спектру економічних процесів, завдяки
їхнім універсальним властивостям.
Дійсно, у загальному випадку квадратична
функція має вигляд:
.
(1)
Обернена функція має вигляд:
,
(2)
тобто узагальнені регресії моделі відповідно будуть:
,
(3)
а вибіркові нелінійні регресії є
(4)
(5)
За
методом найменших квадратів параметри
знаходять з системи:
,
(6)
(7)
Для аналізу зв’язку y і х в цих випадках використовуються кореляційними відношеннями:
,
(8)
де
.