
- •Теорія ймовірностей та математична статистика.
- •Тема 1. Предмет, методи, основні задачі та поняття теорії ймовірностей.
- •Тема 7. Закони великих чисел та центральна гранична теорема
- •Тема 8. Основні поняття математичної статистики: вибіркові спостереження та вибіркові оцінки
- •Тема 9. Методи параметричного та непараметричного оцінювання параметрів
- •Тема10. Методи перевірки статистичних гіпотез
- •§1. Випадкові події. Класифікація подій
- •§2. Операції над подіями
- •§3. Частота події і її властивості
- •§4. Ймовірність події
- •§5. Аксіоматична побудова теорії ймовірності
- •§1. Операції над ймовірностями
- •Ймовірність об’єднання несумісних подій
- •2. Ймовірність перетину подій
- •Ймовірність об’єднання сумісних подій
- •§2. Формула повної ймовірності. Формула Байеса
- •§1. Схема Бернуллі
- •§2. Наймовірніше число успіхів у схемі Бернуллі
- •§3. Граничні теореми теорії ймовірності
- •1. Локальна теорема Муавра-Лапласа
- •2. Інтегральна ознака Муавра-Лапласа
- •3. Гранична теорема Пуассона
- •§1. Випадкові величини та їх розподіл
- •1. Дискретна випадкова величина та її закон розподілу ймовірностей
- •Неперервна випадкова величина та її закони розподілу
- •3. Диференціальна функція розподілу
- •§2. Числові характеристики випадкових величин
- •Дисперсія і середнє квадратичне відхилення.
- •§1. Закони розподілу дискретних випадкових величин
- •§2. Закони розподілу неперервної випадкової величини
- •§3. Закони розподілу, зв’язані з нормальним
- •Лекція 6. Закон великих чисел
- •§1. Нерівність Чебишева
- •§2. Теорема Чебишева
- •§3. Теорема Бернуллі
- •§4. Центральна гранична теорема Ляпунова
- •§1. Статистичний розподіл вибірки та його геометричне зображення
- •§2. Числові характеристики вибірки
- •Лекція 8. Статистичні оцінки параметрів генеральної сукупності
- •§1. Точкові статистичні оцінки параметрів
- •Розглянемо наступну загальну задачу. Маємо випадкову величину х, закон розподілу якої має невідомий параметр а. Потрібно на основі даних вибірки знайти добру оцінку параметру а.
- •§2. Інтервальні статистичні оцінки параметрів
- •Довірчі інтервали для оцінки математичного
- •Довірчі інтервали для математичного сподівання
- •§3. Довірчий інтервал для оцінки середнього квадратичного відхилення
- •Гіпотез
- •§ 2. Критична область. Загальна методика побудови критичних областей
- •§ 3. Перевірка правдивості статистичних гіпотез про рівність двох генеральних середніх.
- •§4. Перевірка гіпотези про нормальний закон розподілу генеральної сукупності. Критерій узгодженості Пірсона
- •§5. Порівняння двох середніх генеральних сукупностей,
- •§1. Рівняння парної регресії
- •§2. Вибірковий коефіцієнт кореляції та його властивості,
- •§1. Багатофакторна регресія
- •§2. Нелінійна регресія
- •Контрольна робота
- •Контрольна робота
§ 2. Критична область. Загальна методика побудови критичних областей
Всю множину значень статистичного критерію К можна розбити на дві підмножини, що не перетинаються А і Ā.
Значення статистичного критерію підмножини А , при яких нульова гіпотеза приймається, називається областю прийняття гіпотези, а підмножина значень Ā, при яких гіпотеза Н0 відхиляється – критичною областю.
Основний принцип перевірки статистичних гіпотез формується так: якщо спостережуване значення критерію Ксп належить області прийняття гіпотези А – гіпотезу приймають, якщо Ксп належить критичній області Ā гіпотезу відхиляють.
Оскільки критерій К – одномірна випадкова величина, то всі її можливі значення належать деякому інтервалу. Тому область прийняття гіпотези А і критична область Ā також є інтервальними, а, значить, існують точки, котрі їх розділяють і називають критичними і позначаються kкр.
Розрізняють односторонню (правосторонню чи лівосторонню) і двосторонню критичні області (див.рис.1).
Р
ис.
1.
Правосторонньою називають критичну область, що визначається нерівністю К > kкр, де kкр – додатне число (рис. 1, а).
Лівосторонньою називають критичну область, що визначається нерівністю К < kкр, де kкр < 0 (рис. 1, б).
Двосторонньою називають критичну область, що визначається нерівністю К < k1кр, К > k2кр, де k2 > k1 (рис.1, в). зокрема, якщо критичні точки симетричні відносно нуля, двостороння критична область визначається нерівностями. Зокрема, якщо критичні точки симетричні відносно нуля, двостороння критична область визначається нерівностями К < - kкр, К > kкр, або К > kкр (kкр >0).
Перевірка статистичних гіпотез будь-якої природи здійснюється за такою схемою:
Формулюється статистична гіпотеза Н0.
Вибирається статистичний критерій відповідно до сформульованої нульової гіпотези Н0.
Залежно від гіпотези Н0 і альтернативної Н1 вибирається одностороння або двостороння критична область.
Щоб побудувати критичні області, необхідно знайти значення критичних точок.
В основі побудови критичної області лежить принцип практичної неможливості здійснитися малоймовірній випадковій події при одній спробі. Тому задається мала величина ймовірності ( = 0,01; = 0,05) (рівень значимості) критерію перевірки правильної гіпотези Н0: на основі відомого розподілу ймовірності критерію К визначається за допомогою спеціальних таблиць (див. додаток 1) критична точка kкр. По знайденому kкр відповідно відбудеться лівостороння, правостороння або двостороння критична область.
За результатами вибірки обчислюється спостережене значення критерію Ксп.
Виходячи з вимоги, що при правильності гіпотези Н0 ймовірність того, що Ксп потрапить у критичну область, має дорівнювати прийнятому рівню значимості , перевіряється статистична гіпотези.
Це твердження подають для лівосторонньої критичної області так:
Р(К < kкр)= ,
для правосторонньої:
Р(К > kкр)= ,
для двосторонньої критичної області:
Р(К < k1кр) + Р(К > k2кр) = .
На практиці двосторонню критичну область будують симетрично розміщену відносно нуля, розділяючи при цьому порівну між кінцями критичних областей, тобто
Р(К < k1кр) = Р(К > k2кр) = /2.
Якщо К потрапляє у критичну область, а ця подія малоймовірна і вона все-таки здійснилася, то нульова гіпотеза Н0 відхиляється. У протилежному разі – приймається.
Розглянемо декілька прикладів статистичної перевірки статистичних гіпотез.