Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
теорія ймов.17 група.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
3.02 Mб
Скачать

§2. Інтервальні статистичні оцінки параметрів

Статистичні оцінки діляться на точкові та інтервальні. Точковою називається оцінка, яка визначається одним числом. Такими були оцінки з §І. При вибірці малого обсягу точкові оцінки можуть значно відхилятись від параметру, тобто приводять до грубих похибок. Тому більш точними є інтервальні оцінки.

Інтервальною називають оцінку, яка визначається двома числами – кінцями інтервалу. Інтервальні оцінки дозволяють встановити точність і надійність оцінок.

Нехай знайдена по даних вибірки статистична характеристика а* служить оцінкою невідомого параметру а. Будемо вважати а постійною величиною (може бути і випадковою). Зрозуміло, що а* тим точніше визначає параметр а, чим менша абсолютна величина різниці . Іншими словами, якщо і , то чим менше , тим точніша оцінка. Таким чином, додатне число характеризує точність оцінки.

В зв’язку з тим, що вибіркові параметри (середні, дисперсія і т.д.) є випадковими величинами, то і їх відхилення від генеральних параметрів (похибки) також будуть випадковими величинами. Таким чином, задачу про оцінку цих відхилень носить ймовірнісний характер і полягає в оцінці ймовірності , наприклад:

чи і т.д. Ймовірність (як правило ) називається надійністю, а інтервали і т.д. називаються надійними інтервалами, або довірчими інтервалами. В загальному випадку надійністю оцінки а по а* називається ймовірність , з якою здійснюється нерівність , а інтервал , який з заданою надійністю накриває невідомий параметр а і називається довірчим інтервалом.

  1. Довірчі інтервали для оцінки математичного

сподівання при відомому

Припускаючи, що випадкова величина Х розподілена нормально, причому середнє квадратичне відхилення цього розподілу відоме. Потрібно оцінити невідоме математичне сподівання по вибірковій середній xВ, тобто поставимо задачу знаходження довірчого інтервалу, що накриває параметр m з надійністю .

Так як величина є сума n незалежних однаково розподілених випадкових величин Хі, то згідно центральної граничної теореми її закон розподілу близький до нормального. Параметри розподілу такі:

.

Вимагаємо, щоб виконувалась рівність:

,

де - задана надійність.

Як відомо , а замінивши Х на і на , отримаємо:

, (1)

де .

Знайшовши з останньої рівності , можна записати

.

Зауважимо, що ймовірність Р (надійність) задана, і рівна , тому маємо

.

Смисл одержаного співвідношення такий: з надійністю можна стверджувати, що довірчий інтервал накриває невідомий параметр m; точність оцінки .

Поставлена задача розв’язана, причому зауважимо, що число визначається з рівності , або і по таблиці (2) функції Лапласа (див. додаток) знаходять аргумент t, якому відповідає значення функції Лапласа, рівне .

З класичної оцінки випливає, що коли об’єм вибірки n зростає, то точність оцінки збільшується, а із збільшенням надійності збільшується t (Ф(t) – зростаюча функція), тобто зменшується точність.

Приклад 1. Статистичні дослідження рівня доходу на працюючого в день дали такі результати:

Дохід в грн. хі

6

7

8

9

10

11

12

13

14

15

Число трудящих ni

1

6

7

15

20

24

15

7

3

2

З надійністю при значенні побудувати інтервал довір’я для математичного сподівання.

Рішення. Допустимо, що рівень доходу розподілений за нормальним законом. Тоді побудова інтервалу довір’я здійснюється за формулою

де

,

9,676<m<11,244