Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-29.doc
Скачиваний:
2
Добавлен:
01.05.2025
Размер:
306.18 Кб
Скачать

10. Физиологические свойства нервных и глиальных клеток.

Наряду с нервными клетками выделяют глиальные клеткаи:

- олигодендроциты

- астроциты

- шванновские клетки

- микроглиоциты

Глиальные клетки окружают нейроны и в некоторых местах соприкасаются с ними. Число глиальных клеток на порядок выше числа нейронов. Основную роль глиальные клетки играют в формировании миелиновых оболочек аксонов. У позвоночных миелиновая оболочка формируется за счет отростков олигодендроцитов, на периферии – за счет шванновских клеток.

Участки без миелиновых оболочек – перехваты Ренвье, которые играют большую роль в передаче возбуждения. При возбуждении нейроны захватыват ионы натрия и кальция и отдают ионы калия. В поддержании концентрации ионов К межклеточных щелей в допустимых пределах большую роль играют астроциты. Не имея каналов, они тем не менее высоко проницаемы для К, вбирают в себя его избыток, а по необходимости выделяют его в среду. Шванновские клетки работают аналогично. Астроциты связаны м/собой контактами и образуют синцитий, эти оболочки тоже проницаемы для ионов калия.

Роль глиальных клеток:

- поддержание ионного гомеостаза

- изоляция нервных клеток

- участие в обмене медиатов

Глиальные клетки облад след св-ами:

- способны ритмически изменять свои размеры. «Пульсация» возрастает при электрич стимуляции, под влиянием БАВ;

- Мембранный заряд формирует МП, отличающийся большой инертностью. Изменения МП медленны и обусловлены измен хим состава межклеточной среды;

- способны к передаче возбуждения с одной клетки на другую, распространяющийся с декрементом;

- возбуждение нейронов влияет на электр явления нейроглии, т.к. МП глиальных клеток зависит от концентрации ионов К в окр среде.

Функция нервных клеток состоит в передаче информации с помощью нервных импульсов. Одним из ключевых механизмов в деятельности нервн клеток является преобразование энергии раздражитель в электрический сигнал или ПД.

11. Функциональные свойства рецепторов. Особенности возникновения возбуждения в первичночувствующих и вторичночувствующих рецепторах.

Рецепторы – специализированные чувствительные образования, воспринимающие и преобразующие раздражения из внешней и внутренней среды организма в специфическую активность нервной системы. Они образованы терминалями дендритов чувствительных нейронов.

Особенности:

1) Энергия раздражитель служит для них стимулом к запуску процессов, совершаемых за счет энергии, которая накоплена в следствии обменных реакций в самой клетке.

2) Рецепторная клетка обладает на выходе электр энергией, обязательно передаваемой другим клеткам, которые сами не способны воспринимать энергию данного внешнего воздействия.

Главными свойствами рецепторов являются специфичность, низкий порог чувствительности и адаптация.

Специфичность - это способность определенных рецепторов воспринимать только определенный вид энергии.

Низкий порог чувствительности - это способность рецептора приходить в состояние возбуждения при самом незначительном воздействии.

Адаптация - способность рецепторов "привыкать" к постоянно действующему стимулу.

По месту приложения раздражителя рецепторы являются первичночувствующими (такитильные, обонятельные, интерорецепторы) – мономодальны (слух, зрение); и вторичночувствующими (зрительные, вкусовые, слуховые, вестибулярные) – бывают и бимодальными (тактильное чувство+боль). Перв/чувств. рецепторы трансформируют энергию стимула в нервн активность непосредственно в сенсорном нейроне, и по его аксону без промежуточных преобразований нерв активность передается сенсорному ядру (1-ый сенсорный уровень). Втор/чувств рецепторы представляют собой высокоспециализированные эпителиальные клетки, к которым подходят нервные волокна (сенсорные волокна), образуя с клетками синаптические контакты. Нервн активность в нейроне возникает лишь после синаптического преобразования потенциала высокоспециализированных клеток, а не в самой нервн клетке.

Механизм преобразования сигналов в рецепторе.

Каскадный процесс.

1) первичные чувств рецепторы

1 – специфическое взаимодействие раздражителя с мембраной рецептора на молекулярном уровне. В итоге: изменение проницаемости мембраны в зоне взаимодействия раздражителя с мембраной.

2 – возникновение рецепторного потенциала в месте действия раздражителя. В результате увеличивается проницаемость для ионов. Натрий входит внутрь и образуется локальный ответ.

3 – электротоническое распространение рецепторного потенциала в направлении аксона нейрона.

4 – перекодировка рецепторного потенциала в ПД. Нерв импульс возникает когда деполяриз эффект рецепторного потенциала или суммация нескольких рецепторных потенциалов достигает КУД в зоне наибольшего приспособления для генерации ПД/ = спайк.

5 – проведение ПД по аксону нейрона в центростремит направлении

2) вторичный чувств рецептор

Осуществляется двумя клетками: рецепторные клетки (восприятие сигнала), нервн клетки. В мембране клеток воспринимателей нет электрогенных участков, в которых мог бы возникать ПД, таким образом место генерации ПД и возникновения специфич трансформирующих изменений разделены. Взаимодействие м/у клетками обеспечивается синапсами.

1,2,3 – как в первичном рецепторе

4 – электротоническое распространение рецепторного потенциала достигается пресинаптической мембраной => выделение в пресинаптическую щель медиатора/посредника (АХ)

5 – медиатор -> постсинапт мембр и реаг с ее рецепторами, возникает постсинаптический потенциал (генераторный)

6- генер потенциал электротонически распр по нервной клетке

7 – генер потенциал достигает электрогенных участков и генерирует ПД

8 – проведение ПД по нерв волокну в центростремит направлении.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]