
- •1.Понятие о регуляции, саморегуляции. Принципы гуморальной и рефлекторной регуляции функций в организме. Нейрогуморальная регуляция.
- •3. Потенциал действия.
- •4. Законы раздражения возбудимых тканей. Полярный закон раздражения (Пфлюгер). Изменения мембранного потенциала под анодом и катодом постоянного тока.
- •5. Законы раздражения возбудимых тканей. Соотношение между силой и временем раздражения. Хронаксиметрия.
- •6. Законы раздражения возбудимых тканей. Адекватные и неадекватные раздражители. Порог раздражения.
- •7. Нервные клетки, их классификация и функции. Особенности возникновения и распространения возбуждения в афферентных нейронах.
- •9. Распространение возбуждения по нервным волокнам. Классификация нервных волокон (Эрлангер и Гассер). Трофическая функция нервных клеток.
- •10. Физиологические свойства нервных и глиальных клеток.
- •11. Функциональные свойства рецепторов. Особенности возникновения возбуждения в первичночувствующих и вторичночувствующих рецепторах.
- •12. Адренергические и холинергические рецепторы клеток разных органов, физиологические эффекты возбуждения этих рецепторов.
- •13. Рецепторный отдел сенсорных систем. Зависимость между силой раздражения и интенсивностью ощущения в рецепторах. ( Закон Вебера и Вебера –Фехнера).
- •14 Строение и работа синапсов.
- •15. Основные принципы интегративно-координационной деятельности нервной системы. Принципы единства конвергенции и дивергенции.
- •16. Физиология спинного мозга. Саморегуляция тонуса скелетных мышц.
- •18. Функциональные особенности вегетативных ганглиев.
- •19. Кора больших полушарий головного мозга, ее функциональная роль. Локализация функций в коре больших полушарий.
- •20. Функциональная роль базальных ядер больших полушарий головного мозга.
- •21. Условный рефлекс. Закономерности образования и проявления. Классификация условных рефлексов.
- •22. Нервный центр. Особенности проведения возбуждения в нервных центрах. Время рефлекса. Рефлексометрия.
- •23. Торможение в центральной нервной системе, его роль и виды. Механизмы тормозных процессов.
- •24. Потребностно-мотивационный подход к изучению высшей нервной деятельности человека. Особенности мотивационного возбуждения.
- •25. Учение и.П.Павлова о первой и второй сигнальных системах действительности. Роль слова, внушение и самовнушение.
- •26. Память, ее значение в формировании приспособительных реакций. Механизмы и особенности кратковременной и долговременной памяти.
- •27. Лимбическая система мозга, ее функциональное значение.
- •28. Ретикулярная формация ствола мозга, ее функциональная роль.
- •29. Утомление. Феномен активного отдыха (и.М.Сеченов). Физиологическое обоснование рациональной организации труда.
18. Функциональные особенности вегетативных ганглиев.
Ганглии симпатического отдела вегетативной нервной системы в зависимости от их локализации разделяют на вертебральные (иначе их называют паравертебральными) и превертебральные. Ганглии парасимпатического отдела вегетативной нервной системы расположены внутри органов или вблизи них.
Вегетативные ганглии имеют большую продолжительность ВПСП. Длительный период следовой гиперполяризации, поэтому легко возникает торможение после возуждения. Очень малая скорость проведения возбуждения - в 5-10 раз больше, чем в центральной нервной системе. Нейроны вегетативных ганглиев характеризуются низкой лабильностью, пропуская из центральной нервной системы на периферию малое количество импульсов. При частоте 100 импульсов в секунду в вегетативных ганглиях возникает полный блок. Таким образом вегетативные ганглии - автономное образование, регулируюшее проведение импульсов к рабочим органам.
Феномен мультипликации (умножения) в вегетативном ганглии - в вегетитивном ганглии одновременно выражены феномены конвергенции и дивергенции импульсов: на теле одного постганглионарного нейрона конвергируют импульсы от нескольких преганглионарных нейронов и любой преганглионарный нейрон иннервирует много постганглионарных нейронов. Это обеспечивает надёжность передачи возбуждения. Вегетативные ганглии играют важную роль в распределении и распространении проходящих через них нервных влияний. Число нервных клеток в ганглиях в несколько раз (в верхнем шейном симпатическом узле —в 32 раза, в
ресничном узле — в 2 раза) больше числа приходящих к ганглию преганглионарных волокон. Каждое из этих волокон сильно ветвится и образует си¬напсы на многих клетках ганглия. Поэто-му нервные импульсы, поступающие по преганглионарному волокну в ганглий, могут оказывать влияние на большое число ганглионарных нейронов и, следо¬вательно, на еще большее число мышеч¬ных и железистых клеток
иннервируемого органа. Таким образом достигается рас¬ширение зоны влияния преганглионарных волокон.
Адренергические синапсы: В адренергических синапсах передача возбуждения осуществляется посредством норадреналина. В пределах периферической иннервации норадреналин принимает участие в передаче импульсов с адренергических волокон на эффекторные клетки. Адренергические аксоны, подходя к эффектору, разветвляются на тонкую сеть волокон с варикозными утолщениями, выполняющими функцию нервных окончаний. Последние участвуют в образовании синаптических контактов с эффекторными клетками (рис. 4.1). В варикозных утолщениях находятся везикулы (пузырьки), содержащие медиатор норадреналин. Биосинтез норадреналина осуществляется в адренергических нейронах из тирозина с участием ряда энзимов. Образование ДОФА и дофамина происходит в цитоплазме нейронов, а норадреналина — в везикулах.
В ответ на нервные импульсы происходит высвобождение норадреналина в синаптическую щель и последующее его взаимодействие с адренорецепторами постсинаптической мембраны. Существующие в организме адренореиепторы обладают неодинаковой чувствительностью к химическим соединениям.
Основываясь на этом, выделяют:
- Альфа-1 и бета-1 рецепторы локализуются в основном на постсинаптических мембранах и реагируют на действие норадреналина, выделяющегося из нервных окончаний постганглионарных нейронов симпатического отдела.
- Альфа-2 и бета-2 рецепторы являются внесинаптическими, а также имеются на пресинаптической мембране тех же нейронов. На альфа-2 рецепторы действуют как адреналин, так и норадреналин. Бета-2 рецепторы чувствительны в основном к адреналину. На альфа-2 рецепторы пресинаптической мембраны норадреналин действует по принципу отрицательной обратной связи - ингибирует собственное выделение. При действии адреналина на бета-2 адренорецепторы пресинаптической мембраны выделение норадреналина усиливается. Поскольку адреналин выделяется из мозгового слоя надпочечников под действием норадреналина, возникает петля положительной обратной связи.
Холинергические синапсы: Медиатор холинергического синапса - ацетилхолин - синтезируется в нервном окончании из ацетилкоэнзима-А и холина и накапливается в пузырьках. У пресинаптической мембраны. Под действием нервного импульса пузырьки лопаются, и ацетилхолин высвобождается в синаптическую щель. Далее он посредством диффузии достигает постсинаптической мембраны и возбуждает холинорецепторы, находящиеся на ней, что и обеспечивает контакт. В конечном итоге все выделенные в синаптическую щель молекулы ацетилхолина расщепляются до холина и уксусной кислоты при помощи специфического фермента ацетилхолинэстераза, что прекращает активирующее действие медиатора на холинорецепторы. Активность ацетилхолинэстеразы настолько велика, что период полужизни ацетилхолина в синаптическои щели измеряется в миллисекундах.
Рецепторы ацетилхолина на постсинаптической мембране (холинорецепторы) неоднородны, они разделяются на два больших класса в зависимости от чувствительности к двум природным алкалоидам - мускарину и никотину. Выделяют М-холинорецепторы, которые специфически активируются мускарином и блокируются атропином, и Н-холинорецепторы, которые специфически активируются малыми концентрациями никотина и блокируются большими концентрациями никотина. Для понимания эффектов препаратов, влияющих на холинергические процессы, важно знать локализацию М- и Н-холинорецепторов в организме. Препараты, влияющие на холинергические процессы, могут быть разделены на два больших класса:
1) препараты, активирующие холинорецепторы, т.е. влияющие подобно самому ацетилхолину, и поэтому они называются холиномиметиками.
2) препараты, блокирующие холинорецепторы, т.е. препятствующие действию ацетилхолина, и они называются холиноблокаторами.