
- •Глава 2
- •Глава 1
- •Глава 2
- •§ 1. Психофизические шкалы
- •§ 2. Нольмерное шкалирование
- •§ 3. Одномерное шкалирование
- •§ 4. Модель шкалирования Терстоуна
- •§ 5. Многомерный анализ сложных стимулов
- •§ 6. Многомерное шкалирование
- •Часть I локализация точки на шкале (нольмерное шкалирование)
- •Глава 1. Методы измерения порогов
- •§ 1. Метод минимальных изменений
- •§ 2. Метод средней ошибки
- •§ 3. Метод постоянных раздражителей
- •Результаты эксперимента по определению пространственного порога тактильного восприятия
- •Методические рекомендации по выполнению учебных заданий по теме
- •Литература
- •Требования к оформлению отчета по учебному заданию
- •Глава 2. Методы обнаружения сигнала
- •§ 1. Общие понятия
- •§ 2. Метод “Да-Нет”
- •Исходы эксперимента по обнаружению сигнала
- •§ 3. Метод двухальтернативного вынужденного выбора (2авв)
- •§ 4. Метод оценки
- •Теоретические результаты эксперимента с использованием метода оценки
- •Способ расчета p(h) и p(fa) по полученным данным в методе мо
- •Обработка результатов
- •Обсуждение результатов
- •Литература
- •Дополнительные сведения о критериях принятия решения
- •Краткое описание программы yes_no.Exe
- •Часть II одномерное шкалирование
- •Глава 1. Метод балльных оценок
- •§ 1. Графические шкалы
- •§ 2. Числовое шкалирование
- •§ 3. Шкалирование по стандартной шкале
- •§ 4. Проблемы, связанные с построением шкал балльных оценок
- •§ 5. Проблемы, связанные с обработкой полученных данных
- •Литература
- •Методические указания по выполнению учебных заданий по теме
- •Глава 2. Метод парных сравнений. Модель терстоуна
- •§ 1. Закон сравнительных суждений
- •§ 2. Процедура измерения
- •§ 3. Упрощенные варианты закона сравнительных суждений
- •§ 4. Процедура решения V варианта закона сравнительных оценок для полной матрицы
- •Матрица частот f
- •М атрица вероятностей p
- •Матрица z ‑ оценок
- •§ 5. Процедура решения V варианта закона сравнительных суждений для неполной матрицы исходных данных
- •Матрица вероятностей p
- •Матрица z — оценок
- •Литература
- •Глава 3. Методы прямой оценки
- •§ 1. Метод установления заданного отношения
- •Результаты оценки испытуемыми стимула как половины стандартного (по Харперу и Стивенсу, 1948)
- •§ 2. Метод оценки величины
- •Литература
- •Методические рекомендации по выполнению учебного задания по теме
- •Часть III многомерное шкалирование
- •Глава 1. Факторный анализ
- •Введение
- •§ 1. Область применения факторного анализа
- •§ 2. Исходные принципы и предположения
- •§ 3. Основные этапы факторного анализа
- •Использование различных методов факторизации для получения двухфакторного решения
- •§ 4. Дополнительные статистические показатели для оценки результатов факторного анализа
- •§ 5. Несколько замечаний по поводу конфирматорного фа
- •Методические рекомендации по выполнению учебного задания по теме «Факторный анализ»
- •Литература
- •Глава 2. Метрическое и неметрическое многомерное шкалирование
- •§ 1. Основные положения
- •§ 2. Исходные данные. Матрица сходств и различий
- •§ 3. Построение пространственной модели стимулов
- •§ 4. Построение метрической модели
- •§ 5. О развитии моделей многомерного шкалирования
- •Литература
- •Методические рекомендации по выполнению учебного задания по теме
- •Методика
- •Обработка результатов
Литература
1. Терстуон Л.Л. Психофизический анализ // Проблемы и методы психофизики / Под ред. А.Г.Асмолова, М.Б.Михалевской. М.: Изд-во Моск. ун-та, 1974.
2. Guilford J. P. Psychometric Methods. N. Y., Toronto, London: Mc-Grow-Hill, 1954.
3. Torgerson N.S. Theory and Method of scaling. N. Y.: John Wiley and Sons, 1958.
Методические указания по выполнению учебного задания по теме “Метод парных сравнений”
Задание 1. Построение шкалы цветовых предпочтений методом парных сравнений
Цель задания: Освоить метод парных сравнений для построения шкалы интервалов. Сравнить построенную шкалу со шкалой порядка, полученную методом балльной оценки.
Методика
Аппаратура. Задание выполняется на IBM-совместимом персональном компьютере. Для предъявления сигнала “Внимание” используются головные телефоны, соединенные со звуковым синтезатором персонального компьютера. Для выполнения учебного задания используется компьютерная программа parcom.exe и mbe.exe1.
Стимуляция. На экране монитора предъявляются цветные прямоугольники из набора восьмицветного теста цветовых предпочтений Люшера: синий, зеленый, красный, желтый, фиолетовый, коричневый, черный и серый.
Процедура опыта. При отработке задания каждый студент выступает сначала в роли испытуемого, а затем обрабатывает собственные данные. Испытуемый сидит на расстоянии 1 м от экрана дисплея. Опыт состоит из 2-х серий.
В первой серии испытуемому предлагается оценить по 10-балльной шкале приятность каждого цвета. Для этого на экране монитора ему предъявляется вертикальная графическая шкала с десятью оценочными градациями от “невообразимо приятный — 10 баллов” до “невообразимо неприятный — 0 баллов” . Внизу экрана в случайном порядке расположены 8 цветных прямоугольников. Используя клавиши управления движением курсора <¬> и <®>, испытуемый может перемещать белую рамку от одного прямоугольника к другому и, таким образом, осуществлять свой выбор. Выбрав тот стимул, который нужно оценить, испытуемый нажимает на клавишу “Tab” и вводит нужное число от 0 до 10. Cправа от графической шкалы на соответствующем месте появляется прямоугольник того же цвета, а в нижнем ряду он исчезает. Действуя таким образом, испытуемый поочередно оценивает все 8 стимулов.
Во второй серии цветные прямоугольники предъявляются парами, и задача испытуемого заключается в том, чтобы оценить, какой из 2-х цветов ему нравится больше. Для ответа используются две клавиши управления движением курсора: <> (левый нравится больше) и <> (правый нравится больше). Как только испытуемый дает ответ, на экране появляется следующая пара стимулов. Всего предъявляются 144 пробы, т.е. все цвета встречается друг с другом по 6 раз. Три раза каждый из цветов предъявляется слева, три раза — справа. В верхнем правом углу экрана каждый раз высвечивается порядковый номер пробы.
Обработка результатов. После опыта студенту выдается компьютерная распечатка, в которой представлены: 1) по результатам первой серии — балльные оценки всех 8 цветов; 2) по результатам второй серии — усредненная по 6 предъявлениям матрица частот (F) — 8x8, элементом матрицы fi,j является частота, с которой в паре j,i стимул i оценивался более красивым, чем стимул j. При необходимости можно переписать на дискету файл с данными: его имя соответствует фамилии испытуемого, написанной латинскими буквами, а расширение — mpc.
Обработка результатов заключается в построении по каждой серии индивидуальной и групповой шкал1. По данным, полученным в первой серии, строится шкала порядка, по данным второй серии — шкала интервалов. Для получения групповых данных каждый испытуемый должен свести в таблицу и усреднить свои данные с данными других четырех испытуемых. Причем в академической группе студентов (как правило, 12 — 15 человек) не должно быть повторяющихся результатов.
Обсуждение результатов. При обсуждении полученных результатов каждый испытуемый должен сравнить расположение стимулов по шкале порядка и шкале интервалов и сделать заключение о преимуществах и недостатках каждого метода. Стоит подумать о метрических преимуществах шкалы интервалов, и об отражении в шкальных значениях более тонких особенностей сходства или различия между стимулами. Кроме того, необходимо дать сравнительную оценку индивидуальной и групповой шкал.
Следует также сопоставить исходные положения модели с полученными в эксперименте результатами и сделать выводы (сравнительно с другими методами) о преимуществах и недостатках метода парных сравнений.