
- •Ю.В.Шаповалов Схемотехника эвм Конспект лекций
- •Глава 1.
- •Глава 2. Основы алгебры логики.
- •§1. Функции алгебры логики и их основные свойства.
- •Диаграммы Венна.
- •Здесь 0 представлен как класс, совсем не имеющий точек, а 1 – как класс всех точек квадрата.
- •§2. Формы записи булевых функций. Табличная запись.
- •Аналитическая запись.
- •§3. Основная теорема.
- •§4. Выражение функции в сднф и скнф с помощью аналитических преобразований.
- •§5. Способы выявления равносильности булевых функций.
- •§6. Свойства функций сложения по модулю 2.
- •Алгоритм построения.
- •§7. Основные классы функций алгебры логики.
- •Класс линейных функций от n аргументов (Ln).
- •Класс функций, сохраняющих единицу (к1).
- •Класс монотонных булевых функций (м).
- •Класс самодвойственных функций (u).
- •Подставляя функции φi вместо аргументов XI, получаем
- •Найдем значение функции f2 на противоположных наборах аргументов
- •§8. Полные системы булевых функций.
- •Раздел 2. Минимизация булевых функций.
- •§1. Сокращенные, тупиковые и минимальные формы булевых функций.
- •§2. Метод Квайна.
- •Алгоритм метода Квайна.
- •§3. Гарвардский метод.
- •§4. Метод импликантных матриц.
- •§5. Минимизация булевых функций с помощью карт Вейча.
- •Правила склеивания с помощью карт Вейча.
- •Метод Блека-Порецкого.
- •§6. Минимальные конъюнктивные нормальные формы булевых функций.
- •Из них обязательными является ас и . Функция имеет две минимальные формы:
- •§8. Абсолютные минимальные представления булевых функций.
- •Раздел 3.
- •§1. Синтез логических схем на интегральных элементах.
- •Синтез схем на элементах типа «не-или».
- •Берем двойное отрицание от каждой суммы
- •Импликанты и объединяются по правилу 1, а не объединяется с ними:
- •§2. Синтез логических схем на мультиплексорах.
- •Глава 3. Структурный и абстрактный синтез устройств вм.
- •Глава 4.Сверхбольшие интегральные схемы
- •4.1. Классификация сбис программируемой логики
- •1. Степень интеграции
- •Соединений.
- •4. Технология изготовления программируемого элемента
- •4.2 Семейство max Общая характеристика.
- •Программируемая матрица соединений.
- •Макроячейка.
- •Разделяемый расширитель.
- •Блок ввода/вывода
- •Глава 5. Методы и средства функционального синтеза
- •2.4. Детерминированные методы расчета элементов и узлов
Метод Блека-Порецкого.
Используется для получения сокращенной ДНФ из любой произвольной функции представления [5].
Идея построения сокращенной ДНФ по произвольной ДНФ вытекает из следующего определения: если в ДНФ для данной функции f(x1 … xn) входит две конъюнкции вида Axi и Bxi, то имеет место равенство D=D\/AB, где D – ДНФ, эквивалентная функция f.
Алгоритм метода Блека-Порецкого.
Провести все возможные склеивания любых двух смежных термов, представляющих соответствующие элементарные конъюнкции, получить L-разрядный троичный набор и построить матрицу ранга n.
Над полученными элементарными конъюнкциями ранга (n-1) провести операции склеивания и поглощения, образовать элементарные конъюнкции нижнего ранга и т.д.
Процесс закончить, когда после операции склеивания и поглощения окажется, что в ДНФ отсутствуют члены, дальнейшее поглощение которых невозможно, т.е. когда будет получена сокращенная ДНФ.
Строится импликантная матрица и определяется максимальное покрытие.
Метод удобен при машинных способах минимизации.
Пример. Найти минимальную форму для заданной функции:
1. Матрица исходных данных 3. Матрица ранга (n-2)
0 0 0 1 2 0 2 1
0 0 1 0 2 0 2 1
0 0 1 1 2 0 1 2
1 0 0 1 2 0 1 2
1 0 1 0
1 0 1 1
2. Матрица ранга (n-1)*
0 0 2 1
2 0 0 1
0 0 1 2
2 0 1 0
2 0 1 1
1 0 2 1
1 0 1 2
4. Вычеркиваем одинаковые строки матрицы ранга (n-2) и получаем
A B C D
2 0 2 1
2 0 1 2
5.
где 0 – инверсия переменной, 1 – переменная, 2 – отсутствует переменная.
§6. Минимальные конъюнктивные нормальные формы булевых функций.
Существует несколько методов получения МНКФ функций, использующих понятие простой импликанты, понятия вхождения и накрытия функций, сокращенных и минимальных КНФ аналогично соответствующим понятиям для дизъюнктивных нормальных форм.
Рассмотрим наиболее простой алгоритм поиска МКНФ, использующий выражение МКНФ через инверсию от МКНФ обратной функции.
Обратной функцией f1(x1 x2 … xn) называется
f
2(x1
x2
… xn)=
f1(x1
x2
… xn).
Алгоритм метода.
исходную функцию представляют в СДНФ;
находят СДНФ обратной функции;
пользуясь любым из известных методов, находят МДНФ обратной функции;
инверсия от МДНФ обратной функции после соответствующих преобразований с использованием формул де Моргана представляет МКНФ исходной функции.
Пример.
Найти МКНФ функции:
СДНФ
Так как обратная функция
имеет значение 1 на тех наборах, на которых f(ABC) принимает значение 0, то в СДНФ обратной функции входят те минтермы, которые отсутствуют в СДНФ функции f(ABC):
СДНФ
Используем метод карт Вейча для отыскания МДНФ обратной функции (рис.9). Сокращенная ДНФ включает простые импликанты: AC,
, BC,
.