- •Ю.В.Шаповалов Схемотехника эвм Конспект лекций
- •Глава 1.
- •Глава 2. Основы алгебры логики.
- •§1. Функции алгебры логики и их основные свойства.
- •Диаграммы Венна.
- •Здесь 0 представлен как класс, совсем не имеющий точек, а 1 – как класс всех точек квадрата.
- •§2. Формы записи булевых функций. Табличная запись.
- •Аналитическая запись.
- •§3. Основная теорема.
- •§4. Выражение функции в сднф и скнф с помощью аналитических преобразований.
- •§5. Способы выявления равносильности булевых функций.
- •§6. Свойства функций сложения по модулю 2.
- •Алгоритм построения.
- •§7. Основные классы функций алгебры логики.
- •Класс линейных функций от n аргументов (Ln).
- •Класс функций, сохраняющих единицу (к1).
- •Класс монотонных булевых функций (м).
- •Класс самодвойственных функций (u).
- •Подставляя функции φi вместо аргументов XI, получаем
- •Найдем значение функции f2 на противоположных наборах аргументов
- •§8. Полные системы булевых функций.
- •Раздел 2. Минимизация булевых функций.
- •§1. Сокращенные, тупиковые и минимальные формы булевых функций.
- •§2. Метод Квайна.
- •Алгоритм метода Квайна.
- •§3. Гарвардский метод.
- •§4. Метод импликантных матриц.
- •§5. Минимизация булевых функций с помощью карт Вейча.
- •Правила склеивания с помощью карт Вейча.
- •Метод Блека-Порецкого.
- •§6. Минимальные конъюнктивные нормальные формы булевых функций.
- •Из них обязательными является ас и . Функция имеет две минимальные формы:
- •§8. Абсолютные минимальные представления булевых функций.
- •Раздел 3.
- •§1. Синтез логических схем на интегральных элементах.
- •Синтез схем на элементах типа «не-или».
- •Берем двойное отрицание от каждой суммы
- •Импликанты и объединяются по правилу 1, а не объединяется с ними:
- •§2. Синтез логических схем на мультиплексорах.
- •Глава 3. Структурный и абстрактный синтез устройств вм.
- •Глава 4.Сверхбольшие интегральные схемы
- •4.1. Классификация сбис программируемой логики
- •1. Степень интеграции
- •Соединений.
- •4. Технология изготовления программируемого элемента
- •4.2 Семейство max Общая характеристика.
- •Программируемая матрица соединений.
- •Макроячейка.
- •Разделяемый расширитель.
- •Блок ввода/вывода
- •Глава 5. Методы и средства функционального синтеза
- •2.4. Детерминированные методы расчета элементов и узлов
§2. Метод Квайна.
Этот метод используется для получения сокращенной ДНФ функции из СДНФ ее с помощью операций неполного склеивания:
и поглощения A+AB=A.
Теорема Квайна. Если в СДНФ булевой функции провести все операции неполного склеивания, а затем все операции поглощения, то получится сокращенная ДНФ этой функции, т.е. дизъюнкция всех ее простых импликант.
Доказательство теоремы проверять не будем.
Чтобы получить все простые импликанты, так как один и тот же член дизъюнктивной формы может склеиваться с несколькими другими, образуя при этом различные импликанты, после склеивания исходный член следует сохранить.
Алгоритм метода Квайна.
Провести все возможные склеивания минтермов, входящих в СДНФ функции. В результате образуются элементарные конъюнкции ранга (n-1).
Так как склеиваться могут только элементарные конъюнкции одного ранга, то в дальнейших склеиваниях минтермы не участвуют, поэтому следует выполнить операции поглощения.
Над полученными элементарными конъюнкциями ранга (n-1) повторить операции склеивания и поглощения, образовав элементарные конъюнкции нижнего ранга, и т.д.
Процесс заканчивается, когда дальнейшее склеивание оказывается невозможным.
Оставшиеся в результате поглощения элементарные конъюнкции являются простыми импликантами функции, а дизъюнкция их есть сокращенная ДНФ функции.
Пример. Найти сокращенную ДНФ функции:
СДНФ функции
Приводим алгоритм метода:
Здесь \/ - отметка поглощения.
Сокращенная ДНФ функции:
Пример. Найти сокращенную ДНФ функции:
СДНФ функции
Проводим операции склеивания и поглощения:
Сокращенная ДНФ функции
§3. Гарвардский метод.
Метод, разработанный в Гарвардском университете, позволяет находить сокращенную ДНФ функции с использованием специальных карт для записи булевых функций соответствующего числа переменных.
В столбцах карт перечислены все элементарные конъюнкции функции n переменных, содержащие от 1-й до n букв.
Алгоритм Гарвардского метода.
Внести в карту для функции соответствующего числа переменных значения функции на всех наборах.
Вычеркнуть все строки, где записаны нулевые значения функции.
В каждом столбце таблицы вычеркнуть числа, совпадающие с числами в вычеркнутых строках данного столбца.
Из каждой не вычеркнутой строки выбрать элементарную конъюнкцию, содержащую наименьшее количество букв двоичный эквивалент которой остался не зачеркнутым.
Пример. Найти сокращенную ДНФ функции:
Карта для заданной функции приведена в табл.17.
В результате получаем
.
Нетрудно убедиться,
что в полученной сокращенной ДНФ
импликанту
можно исключить:
Таблица 17.
Простая импликанта, которую нельзя исключить из сокращенной ДНФ функции, называется существенной импликантой.
Дизъюнкция существенных импликант функции называется тупиковой ДНФ заданной функции.
Некоторые булевы функции имеют несколько тупиковых форм. Тупиковая ДНФ функции называется минимальной (МДНФ), если количество букв, которое она содержит, будет не больше, чем в любой другой ДНФ той же функции.
Отсюда следует, что для отыскания минимальных форм достаточно получить все тупиковые формы заданной функции и выбрать среди них минимальные.
