
- •Лекции по дисциплине: «Геофизические методы исследований и интерпретация геофизических данных» для студентов 4 к, 3 группы
- •Основными задачами геофизических исследований в игг (и.М. Мелькановицкий, 1998) являются (табл. 1.1):
- •1.2 Методы инженерно-гидрогеологической геофизики
- •1.3 Технология полевых работ
- •2. 1. Внутриметодные геофизические комплексы
- •2.2. Системный подход к геолого-геофизическим исследованиям
- •1 Увлажненные наносы, 2 – граниты, 3 – зона трещиноватости, 4 – глыбовые песчаники, 5 – глины
- •4.1 Геофизические методы при гидрогеологических съёмках и интерпретация результатов
- •4.2. Геофизическая интерпретация
- •4.3. Гидрогеологическая интерпретация геофизических данных
- •4.4. Интерпретация данных электроразведки
- •4.4. А. Интерпретации электромагнитного зондирования
- •4. 4.А.1. Качественная интерпретация зондирований
- •4.4.А.2. Геолого-гидрогеологическое истолкование результатов зондирований
- •4.4.Б. Интерпретация электромагнитного профилирования
- •4.4.Б.1 Принципы интерпретации данных электромагнитного профилирования
- •4.4.Б.2 Количественная интерпретация данных электромагнитного профилирования
- •5.1 Поиски и разведка пресных подземных вод
- •5.2 Поиски и разведка термальных вод
- •5.3 Поиски и разведка минеральных вод
- •5.4 Изучение динамики подземных вод и водных свойств толщ горных пород
- •5.5 Изучение условий обводнённости горных выработок
- •5.6 Гидромелиоративные и почвенно-мелиоративные исследования
- •5.6.1 Определение минерализации подземных вод
- •6.1 Принципы комплексной интерпретации
- •6.1.1 Группы опорных и прогнозных параметров, их взаимосвязи
- •6.2 Примеры расчётов водно-физических параметров
- •9.2. Геологические предпосылки постановки геофизических работ для исследования карста и карствовых явлений
- •9.2.1 Электроразведка
- •9.2.2 Сейсморазведка
- •9.2.3 Радиоволновые методы
- •8.2.4 Скважинные методы
- •9.3 Методика комплексных геофизических исследований
- •9.3.1 Выбор комплекса методов
- •9.3.2 Электропрофилирование и электрозондирование
- •9.3.3 Сейсморазведка
- •9.3.4 Скважинные измерения
- •9. 4. Особенности методики проведения геофизических работ на территориях с интенсивными электрическими помехами
- •8.5. Выводы и рекомендации по изучению карста
- •12.1 Сейсмическое микрорайонирование
- •12.1.1Зоны возникновения очагов землетрясений - воз
12.1 Сейсмическое микрорайонирование
Сейсмическое микрорайонирование представляет собой оценку сейсмической опасности, при которой учитывается влияние местных грунтовых условий на интенсивность сейсмических колебаний на поверхности Земли, и определяются поправки, уменьшающие или увеличивающие сейсмичность района, задаваемую картами общего или детального сейсмического районирования (ДСР).
Задача сейсмического микрорайонирования состоит в уточнении параметров сейсмических воздействий на площадке строительства и эксплуатации зданий и сооружений в зависимости от местных условий – грунтовых, геоморфологических, гидрогеологических и геофизических.
При сейсмическом микрорайонировании (СМР), в отличие от ОСР и ДСР изучаются не источники сейсмической опасности, а реакция грунтов на сейсмические воздействия. На сейсмическую интенсивность заметное влияние оказывают свойства грунтовой толщи. Наименьшей интенсивностью характеризуются сотрясения на скальных грунтах – гранитах, песчаниках и известняках. Плотным дисперсным грунтам – пескам, супесям, суглинкам и глинам соответствуют средние значения сейсмической интенсивности. Наибольшая сейсмическая интенсивность отмечена на рыхлых дисперсных грунтах – в первую очередь насыпных. Основное влияние на сейсмическую интенсивность оказывают свойства самой верхней 10-метровой толщи грунтов.
По определению при СМР оцениваются не абсолютные значения воздействий, а их приращения по отношению к оценкам, полученным при ОСР и ДСР для средних грунтовых условий. Влияние грунтовых условий на сейсмическую интенсивность учитывается понятием приращения сейсмической интенсивности (балльности).
Согласно Нормативным документам эта поправка, в зависимости от свойств грунта, может быть равна 0, +1 или -1.
Опыт показывает, что наибольшее влияние на величину приращения сейсмической интенсивности оказывают различия в физических свойствах верхней толщи грунтов мощностью 15 – 20 м. Заметное влияние на сейсмическую интенсивность оказывает уровень грунтовых вод при глубине менее 5 м. Этим и определяется минимально необходимая глубинность исследований при СМР для гражданских объектов, однако эта величина может изменяться в ту или иную сторону с учетом реальных инженерно-геологических условий. Как правило, исследования СМР выполняют до первой жесткой границы.
Основным источником информации о сейсмических свойствах грунтов являются инструментальные исследования, включающие различные методы геофизики.
Некоторые опасные геологические процессы, такие как сейсмогравитационные явления (оползни, обвалы, камнепады, сели, лавины и т.п.), замачивание лессовых грунтов, геокриологические явления и другие, имеют особенности своего проявления при достаточно сильных землетрясениях. По этой причине учет этих опасностей также принято рассматривать в кругу проблем сейсмического микрорайонирования.
К основным методам СМР относятся: метод инженерно-геологических аналогий; метод сейсмических жесткостей; сейсмологические методы, основанные на регистрации и обработке слабых землетрясений и микросейсм, а также расчетные методы.
Результатом работ СМР являются карты сейсмического микрорайонирования в масштабе 1:5000 и крупнее, которые отображают зоны различной интенсивности сейсмических воздействий с точностью до 0.1 балла.
Карты СМР позволяют с высокой степенью детальности оценивать локальные инженерно-сейсмические условия территории исследования и должны учитываться всеми организациями, ведущими изыскания, проектирование и строительство.
Сейсмическое микрорайонирование входит в состав инженерных изысканий и выполняется специализированными изыскательскими организациями.