
- •Рецензенты:
- •Предисловие
- •Введение
- •Глава I. Исторический очерк становления и развития микробиологии
- •Контрольные вопросы и задания
- •Список рекомендуемой литературы
- •Глава II. Строение прокариотической клетки
- •II. 1. Размеры и формы клеток
- •II. 2. Ультраструктура бактериальной клетки
- •II. 2. 1. Поверхностные структуры
- •II. 2. 2. Клеточная оболочка
- •II. 2. 3. Цитоплазматическая мембрана
- •II. 2. 4. Цитоплазма
- •Контрольные вопросы и задания
- •Список рекомендуемой литературы
- •Глава III. Рост и размножение микроорганизмов
- •III. 1. Клеточные циклы бактерий
- •III. 2. Морфологически дифференцированные клетки
- •III. 3. Фазы роста бактерий
- •Контрольные вопросы и задания
- •Список рекомендуемой литературы
- •Глава IV. Генетика микроорганизмов
- •IV. 1. Геном прокариот
- •IV. 1. 1. Структура бактериальной хромосомы
- •IV. 1. 2. Внехромосомные факторы наследственности
- •IV. 2. Репликация днк прокариот
- •IV. 3. Изменение генетического материала
- •Контрольные вопросы и задания
- •Список рекомендуемой литературы
- •Глава V. Питание микроорганизмов
- •V.1. Транспорт питательных веществ
- •V.2. Питательные субстраты
- •V.3. Типы питания
- •Контрольные вопросы и задания
- •Список рекомендуемой литературы
- •Глава VI. Систематика микроорганизмов
- •VI.1. Таксономия и номенклатура микроорганизмов
- •VI.2. Идентификация микроорганизмов
- •VI.3. Группы прокариотических микроорганизмов
- •Контрольные вопросы и задания
- •Список рекомендуемой литературы
- •Глава VII. Метаболизм бактерий
- •VII. 1. Энергетический метаболизм
- •VII. 1.1. Брожение
- •VII. 1.1. 1. Гомоферментативное молочнокислое брожение
- •VII. 1. 1. 2. Спиртовое брожение
- •VII. 1.1. 3. Пропионовокислое брожение
- •VII. 1. 1. 4. Маслянокислое брожение
- •VII. 1. 1. 5. Альтернативные пути сбраживания
- •VII. 1. 2. Дыхание
- •VII. 1. 2.1. Аэробное дыхание
- •VII. 1. 2. 2. Анаэробное дыхание
- •VII. 1.3. Фотосинтез
- •VII. 1. 3.1. Пигменты фотосинтезирующих бактерий
- •VII. 1. 3. 2. Фотосинтетический аппарат
- •VII. 1.3. 3. Фотофизические процессы
- •VII. 1.3. 4. Фотохимические процессы
- •VII. 1.3. 5. Фиксация со2 фотосинтезирующими бактериями
- •VII. 2. Конструктивный метаболизм
- •Контрольные вопросы и задания
- •Список рекомендуемой литературы
- •Глава VIII. Вирусы
- •VIII.1. Строение вирусов
- •VIII.2. Репродукция вирусов
- •Контрольные вопросы и задания
- •Список рекомендуемой литературы
- •Глава IX. Влияние факторов внешней среды на микроорганизмы
- •VIII. 1. Физические факторы
- •VIII. 2. Химические факторы
- •Контрольные вопросы и задания
- •Список рекомендуемой литературы
- •Глава X. Экология микроорганизмов
- •X.1. Биогеохимическая деятельность микроорганизмов
- •X. 1. 1. Круговорот углерода
- •X.1. 2. Круговорот азота
- •X.1. 3. Круговорот серы
- •X.1. 4. Круговорот фосфора
- •X.1. 5. Круговорот железа
- •X.2. Типы взаимоотношений микроорганизмов в биоценозах
- •X.3. Естественные среды обитания микроорганизмов
- •X.3.1. Микрофлора почвы
- •X.3.2. Микрофлора воды
- •X.3.3. Микрофлора воздуха
- •X.3.4. Микрофлора человека
- •Контрольные вопросы задания
- •Список рекомендуемой литературы
- •Глава XI. Патогенные микроорганизмы и иммунитет
- •XI.1. Патогенность микроорганизмов
- •XI.2. Инфекционный процесс
- •XI.3. Антиинфекционный иммунитет
- •XI.3.1. Неспецифический (врожденный) иммунитет
- •XI.3. 2. Специфический (адаптационный, приобретенный) иммунитет
- •Контрольные вопросы и задания
- •Список рекомендуемой литературы
- •Библиографический список
- •Оглавление
- •Глава VIII. Вирусы 71
- •Глава IX влияние факторов внешней среды на микроорганизмы 77
- •Глава X экология микроорганизмов 80
- •Глава XI патогенные микроорганизмы и иммунитет 96
IV. 1. 2. Внехромосомные факторы наследственности
У многих обнаружены внехромосомные факторы наследственности: плазмиды, IS-элементы и транспозоны.
Плазмиды – это двуцепочечные кольцевые молекулы ДНК, размером 0,1 до 5% размера хромосомы, несущие гены, необязательные для клетки-хозяина, или гены, необходимые только в определенной среде.
Существуют разные классификации плазмид, чаще всего основу классификации составляет наличие в плазмидах определенных модульных сегментов ДНК (табл. 3).
Таблица 3
Классификация плазмид
Группа плазмид |
Свойства плазмид |
F – плазмиды R – плазмиды Col – плазмиды Ent – плазмиды Hly – плазмиды Биодегративные плазмиды |
Донорские функции Устойчивость к лекарственным препаратам Синтез колицинов Синтез энтеротоксинов Синтез гемолизинов Разрушение различных органических и неорганических соединений, в том числе и тяжелых металлов |
Каждая плазмида является самостоятельным репликоном, сама контролирует собственную репликацию. Для этой цели она должна иметь по крайней мере один или несколько репликативных модулей (областей инициации репликации), которые и позволяют ей автономно реплицироваться. Наличие других модулей, не связанных с репликацией, не являются обязательными для каждой плазмиды. Коньюгативные (самотрансмиссивные) плазмиды, подобно F-фактору имеют модули, содержащие гены и регуляторные области, необходимые для переноса плазмиды из одной клетки в другую. Трансмиссивные плазмиды кодируют специальные ворсинки, половые пили, которые появляются на поверхности клеток, содержащих плазмиды, и способны специфически связываться с поверхностью безплазмидных клеток. Последующее сокращение пиля притягивает клетки друг к другу, и между ними образуется мостик, через который плазмидная ДНК может передаваться в новую клетку. Неконьюгативные плазмиды (утратившие модуль коньюгации) не способны к самотрансмиссивности, но способные к передаче в присутствии трансмиссивных плазмид, используя их аппарат коньюгации.
F-плазмиды обеспечивают устойчивость к антибиотикам. Их модули содержат гены, белковые продуты которых (например, -лактамаза) инактивируют антибиотики. Col-плазмиды, несут Col-модули, кодирующие один из нескольких белков – колицинов (антибактериальных агентов).
Модульное строение типичной R-плазмиды представлено на рис. 15. Около 50% последовательности из приблизительно 105 пар оснований этих плазмид гомологичны одному из участков F-плазмиды как по структуре, так и по функциям. Вторая половина R-плазмиды не родственна F и содержит модули, ответственные за резистентность к стрептомицину, сульфаниламидам, хлорамфениколу и канамицину.
Рис. 15. Схематичное изображение генома типичной R-плазмиды
Светлый овал – область начала репликации. Гены резистентности к антибиотикам: тетрациклину – tetr, хлорамфениколу – camr , канамицину – kanr , стрептомицину – strr, ампицилину – ampr. Точками выделены сегменты, необходимые для коньюгации (tra), штриховкой – мобильные элементы
У бактерий идентифицированы дискретные подвижные элементы (мобильные элементы) – IS-элементы и транспозоны. Эти элементы способны перемещаться не только между плазмидами, но и между плазмидными и клеточными геномами, в также в пределах самого бактериального генома. Обычно многие модули в плазмидах являются подвижными элементами или фланкированы ими.
IS-элементы (от англ. insertion sequences – последовательности-вставки) – это сегменты ДНК, способные перемещаться как целое из одного участка локализации в другой. IS-элементы содержат лишь те гены, которые необходимы для их собственного перемещения – транспозиции.
Транспозонами (Tn-элементы) называют сегменты ДНК, обладающие теми же свойствами, что и IS-элементы, но содержащие также гены, не имеющие непосредственного отношения к транспозиции (гены устойчивости к антибиотикам, гены токсинов или гены дополнительных ферментов клеточного метаболизма).
IS-элементы и транспозоны ответственны за целый ряд генетических явлений у бактерий. Встраивание мобильного элемента в какой-либо ген может привести к его инактивации. Кроме того, некоторые IS-элементы и транспозоны вызывают генетическую нестабильность поблизости от места своей локализации: в окрестностях элемента повышается частота делеций и инверсий. Мобильные элементы способны вызывать транслокации.