
- •Архитектура эвм
- •Введение
- •1. История развития вычислительной техники. Классификация и основные характеристики вычислительных машин и систем
- •1.2. Нулевое поколение
- •1.3. Первое поколение
- •1.4. Второе поколение
- •1.5. Третье поколение
- •1.6. Четвёртое поколение
- •1.7. Пятое поколение
- •1.8. Шестое поколение
- •1.9. Классификация эвм
- •2. Принципы построения эвм и вычислительных систем
- •2.1. Архитектура фон Неймана
- •2.2. Структурная схема персонального компьютера
- •2.3. Структурные схемы вычислительных систем
- •2.4. Внутренние устройства персонального компьютера и их характеристики
- •2.4.1. Центральный процессор
- •2.4.2. Оперативное запоминающее устройство
- •2.4.3. Постоянное запоминающее устройство
- •2.4.5. Энергонезависимое оперативное запоминающее устройство
- •3. Архитектура внутренних устройств персонального компьютера
- •3.1. Архитектура процессора
- •3.2. Архитектура оперативной памяти1
- •3.2.1. Блочная организация памяти
- •3.2.3. Синхронные и асинхронные запоминающие устройства
- •3.3. Очередь и стек, их назначение и система адресации.
- •4. Внешние запоминающие устройства
- •4.1. Характеристики, организация, и принципы работы внешней памяти эвм и вс.
- •4.2. Накопители на магнитных дисках для устройств памяти с прямым доступом
- •4.3. Накопители на магнитных носителях для устройств памяти с последовательным доступом.
- •4.4. Устройство и принцип работы накопителей на оптических дисках.
- •4.5. Устройство и принцип работы флеш-памяти nor и nand
- •5. Устройства ввода и вывода
- •5.1. Общие принципы организации системы ввода-вывода
- •5.2. Принципы работы и организация клавиатуры
- •5.2.1. Массивы клавишей, кнопок и индикаторов
- •5.2.2. Скан-коды клавиатуры
- •5.2.3. Контроллер интерфейса клавиатуры
- •8042 – Контроллер интерфейса клавиатуры;
- •5.2. Принципы работы и организация мыши
- •Системная плата
- •5.3. Принципы работы и организация видеоподсистемы
- •5.3.1. Принципы формирования изображения и режимы работы монитора
- •5.3.2. Архитектура видеоподсистемы
- •5.3.3. Интерфейсы дисплеев и адаптера
- •5.4. Архитектура аудиоподсистемы
- •5.4.1. Звуковые карты
- •5.4.2. Входные и выходные аудиоустройства
- •5.5. Принципы работы и организация портов
- •5.5.1. Принципы передачи данных
- •5.5.2. Последовательный Com-порт
- •5.5.3. Параллельный порт lpt
- •5.5.5. Инфракрасный IrDa-порт
- •5.5.6. Радиоинтерфейс BlueTooth
- •5.5.7. Порт FareWare
- •5.5. Принципы работы и организация принтеров
- •5.6. Принципы работы и организация сканеров
- •6. Организация обмена информацией между центральным процессором, внутренней памятью и внешними устройствами
- •6.1. Система шин вычислительной машины: общие принципы
- •6.2. Шины "процессор – память"
- •6.3. Системная шина
- •6.3.1. Структура системной шины
- •6.3.2. Системы арбитража шины
- •6.3.3. Протоколы системной шины
- •6.3.4. Стандарты шин
- •6.4. Устройства прямого доступа к памяти.
- •6.5. Канальные системы ввода/вывода
- •7. Аппаратно-программные средства для реализации многопрограммных режимов работы
- •7.1. Система адресации в реальном и защищенном режиме работы эвм и вс на базе микропроцессоров Intel.
- •8. Параллельные вычислительные системы
- •9. Перспективы развития эвм и вычислительных систем
- •Список литературных источников
6.3.2. Системы арбитража шины
Система арбитража разрешает конфликты, возникающие при обращении к ней нескольких устройств одновременно. Принципиально возможны три схемы арбитража:
централизованная с параллельным арбитражем (рис. 6.4,а);
централизованная с последовательным арбитражем (рис. 6.4,б);
децентрализованная (рис. 6.5).
Централизованная схема предполагает существования специального устройства – арбитра шины. Ведущие устройства У0 … Уn-1 выдают запросы на предоставление шины. О текущем состоянии шины сигнализирует состояние линии "занято". Центральный арбитр в случае параллельного арбитража выдаёт индивидуальные сигналы предоставления шины (разрешения) каждому устройству при свободной системной шине. В случае последовательного арбитража сигнал предоставления шины выдаётся один общий, но он передаётся от одного устройства к другому. При этом можно учесть и приоритет ведущих устройств.
а)
б)
Рис. 6.4. Схемы параллельного (а) и последовательного (б) централизованного арбитража
Децентрализованный арбитраж не предусматривает существования центрального арбитра, но предусматривает существование контроллеров доступа к шине (КДШ) у каждого ведущего устройства У0 … Уn-1. Каждому ведущему устройству присваивается уникальный уровень приоритета.
Рис. 6.5. Схема децентрализованного арбитража
Шины запросов состоят из нескольких линий. На шину запроса контроллер выставляет свой номер. Если сигнал "Занято" отсутствует, то устройство захватывает шину и выдаёт сигнал "Занято". Если сигнал "Занято" в момент запроса установлен, то устройство сравнивая уровни приоритета свой и конкурента решает вопрос о захвате системной шины: устройства с более низким приоритетом снимают свои запросы и переводят свои процессы в состояние ожидания.
6.3.3. Протоколы системной шины
Обмен данными по системной шине происходит по определённым правилам, называемым протоколом шины. Различают синхронный (рис. 6.6) и асинхронный (рис. 6.7) протоколы.
Синхронный протокол предусматривает тактовых импульсов (ТИ) в качестве импульсов синхронизации. Ведущее устройство (М – Master) в интервал времени t1 – t2 передаёт сигнал START, сигналы управления и адрес.
Рис. 6.7. Временная диаграмма синхронного протокола
В интервале времени t3 – t4 ведомое устройство (S – Slave) передаёт своё состояние, ведущее устройство – данные. Приём данных подтверждает сигнал "Подтверждение", переданный ведомым устройством. Разумеется, быстродействие устройств должно быть достаточно высоким, для того чтобы успевать реагировать на тактовые импульсы.
Рис. 6.5. Временная диаграмма асинхронного протокола
Асинхронный протокол (рис. 6.5) предусматривает синхронизацию работы устройств не тактовыми импульсами, а специальными сигналами состояния процесса. Буквами M и S обозначены действия ведущего и ведомого устройств соответственно.
Процесс обмена начинается в момент времени t1 передачей ведущим устройством сигнала управления и адреса. В момент t2 ведомые устройство сигналом "Состояние" сообщают, что они готовы к работе. В момент t3 ведущее устройство передаёт строб-импульс адреса, предписывая ведомым устройствам прочитать адрес. В момент времени t4 импульсом "Подтверждение адреса" вызванное ведомое устройство сообщает, что оно готово к работе.
В момент времени t6 передаётся сигнал управления, сообщающий, что будут затребованы данные. В момент времени t7 ведомое устройство сообщает, что данные выставлены, а в момент времени t8 передаёт строб данных, ограничивающий время чтения данных. В момент времени t9 ведущее устройтво сигналом "Подтверждение данных" сообщает, что данные прочитаны. По окончании этого сигнала процесс обмена данными завершается.