
- •2.Обслуживание разъединителей , отделителей и короткозамыкателей
- •3.Обслуживание устройств заземления подстанций
- •7.Контроль состояния трансформаторного масла и методы его очистки .
- •Селективная очистка
- •Депарафинизация масел
- •Контактная очистка
- •9.Как зависит допустимая амплитуда вибраций подшипников качения электродвигателя от часты вращения ?????
- •10Условия включение трансформаторов на параллельною работу
- •11Для каких целей служит масло в трансформаторе
- •12.Каковы преимущества водородного охлаждения обмоток ротора перед воздушным охлаждением
- •13 Источники оперативного тока на пс
- •15.При какой температуре входящего для охлаждения генератора газа работа генератора не допускается
- •19.Меры борьбы с гололедом на проводах и их вибраций
- •20.Допустимые режимы работы электродвигателей .Их обслуживание .
- •21.Обслуживание систем охлаждения турбогенераторов
- •22.Приемка кабельных линий в эксплуатацию
- •23.Ввод в работу после ремонта силовых трансформаторов
- •24.Обслуживание шин и токопроводов
- •25.Обслуживание токоограничевающих реакторов
3.Обслуживание устройств заземления подстанций
Заземляющие устройства на подстанциях выполняют роль защитных и рабочих заземлений.
Защитное заземление обеспечивает безопасность обслуживающего персонала при возможных повреждениях изоляции электрического оборудования и замыканиях токопроводящих частей на землю. С этой точки зрения оно рассчитывается и выполняется так, чтобы напряжение прикосновения не выходило за пределы нормируемых значений (напряжение шага не нормируется, так как оно представляет собой меньшую опасность). На подстанциях заземляются баки трансформаторов и дугогасящих реакторов, корпуса электрических машин, аппаратов и их приводы, вторичные обмотки измерительных трансформаторов, каркасы щитов и пультов, металлические конструкции распределительных устройств и другое оборудование, которое может оказаться под напряжением.
Рабочее заземление необходимо для нормальной работы электроустановок в целях придания им определенных эксплуатационных свойств, а именно: возможности сохранения некоторое время поврежденной линии в работе, эффективного гашения дуговых замыканий на землю, снижения уровня изоляции силовых трансформаторов, снижения коммутационных перенапряжений и др. Перечисленные свойства электроустановки приобретают в зависимости от способа заземления нейтралей обмоток силовых трансформаторов. В связи с этим различают электроустановки, работающие с изолированной нейтралью, заземленной через дугогасящие реакторы (компенсированные сети), с заземленной нейтралью через активные и индуктивные сопротивления, в том числе и с глухозаземленной нейтралью (эффективно-заземленные сети).
С изолированной нейтралью обычно работают сети напряжением 6-10 кВ, электрическая емкость которых невелика и ток замыкания на землю не превышает 30 и 20 А соответственно. При таких токах в месте замыкания на землю происходит самопогасание дуги. Если ток замыкания на землю превышает указанные значения, прибегают к компенсации его с помощью дугогасящего реактора, один из выводов которого подключают к нейтрали силового трансформатора, а другой - к заземляющему устройству (подробнее см. §10.1). С компенсацией емкостного тока работают сети напряжением до 35 кВ.
Сети напряжением 110 кВ и выше относят к эффективно-заземленным сетям (см. §1.7). Нейтрали всех (или части) силовых трансформаторов присоединяют к заземляющим устройствам подстанции наглухо (или через заземляющие реакторы с небольшой индуктивностью) с таким расчетом, чтобы при однофазных КЗ в сети напряжение на неповрежденных фазах относительно земли не превышало 1,4Uф . Для эффективно-заземленных сетей характерны большие значения токов замыкания на землю при небольшой длительности их прохождения (поврежденный участок сети отключается действием релейной защиты).
К заземлителям подстанций присоединяются также вентильные разрядники и молниеотводы, защищающие оборудование от перенапряжений и прямых ударов молнии. Такое заземление называют грозозащитным.
Заземляющие устройства подстанций обычно используют для трех видов заземлений: защитного, рабочего и грозозащитного. Основным требованием к заземляющим устройствам такого рода является требование безопасности персонала. Если оно удовлетворяется, то рабочее заземление, как правило, не предъявляет дополнительных требований к заземляющему устройству. Снижение сопротивления заземляющего устройства требуется лишь при больших значениях тока КЗ.
Заземляющие устройства подстанций выполняются из заземлителей (вертикальных металлических труб) и соединенных между собой в заземляющую сетку горизонтальных полос, проложенных в земле, а также наземных заземляющих магистралей и проводников, связывающих оборудование с заземлителями. Каждый заземляемый элемент оборудования присоединяется к магистрали отдельным проводником.
Присоединение заземляющих проводников к корпусам аппаратов и конструкциям выполняется сваркой или надежным болтовым соединением.
Заземляющие проводники, проложенные в распределительных устройствах, должны быть доступны для внешнего осмотра, при котором проверяется их целость, состояние соединений, непрерывность проводки. Места присоединения к заземляющим устройствам переносных заземлений должны быть очищены от краски и защищены смазкой от коррозии.
В эксплуатации состояние заземляющих устройств периодически контролируется: проводится выборочная проверка заземлителей, находящихся в земле; проверяется сопротивление заземляющих устройств. Измерения проводятся в периоды наименьшей проводимости почвы, т.е. при сухой или промерзшей почве.
4.Основные назначения разъединителей
Разъединитель представляет собой коммутационный аппарат, используемый для включения и отключения электрических цепей в таких условиях, при которых на его контактах не возникает длинной открытой электрической дуги. В отключенном положении разъединителя на его контактах создается видимый разрыв.
Кроме того, разъединители наружной установки рассчитываются на возможность разрыва посредством их ножей зарядных токов воздушных и кабельных линий, а также токов холостого хода силовых трансформаторов и токов небольших нагрузок. Поэтому их контакты часто снабжаются дугогасительными рогами.
Отличительной чертой разъединителей, а также отделителей и короткозамыкателей в сравнении с выключателями является отсутствие дугогасительных устройств.
Основное назначение разъединителя заключается в изоляции отключенных частей электрической цепи с целью безопасного ремонта оборудования.
Разъединители строятся для внутренней и для наружной установки на всю шкалу токов и напряжений. Они могут выполняться как трехполюсными на общей раме (обычно при напряжениях до 35 кВ), так и однополюсными при более высоких напряжениях. Последнее обусловлено тем, что при напряжениях свыше 35 кВ требуемые расстояния между фазами достаточно велики и общая рама получается чрезвычайно громоздкой и тяжелой.
Основным элементом разъединителя являются его контакты. Они должны надежно работать при номинальном режиме, а также при перегрузках и сквозных токах короткого замыкания. В разъединителях применяют высокие контактные нажатия. При больших токах контакты выполняют из нескольких (до восьми) параллельных пластин. Применяют пластины прямоугольного, швеллерного и круглого сечения.
Разъединители могут иметь приводы: ручной - оперативную штангу, рычажной или штурвальный и двигательный - электрический, пневматический.
Во избежание ошибочных действий, т.е. размыкания под током, что может привести к крупным авариям и несчастным случаям, разъединитель всегда блокируется с выключателем. Блокировка допускает оперирование разъединителем только при отключенном выключателе. По исполнению блокировка может быть механической, механической замковой, электромагнитной замковой.
Конструктивное различие между отдельными типами разъединителей состоит прежде всего в характере движения подвижного контакта (ножа). По этому признаку различают разъединители:
вертикально-поворотного (врубного) и горизонтально-поворотного типов с вращением ножа в плоскости, параллельной или перпендикулярной осям поддерживающих изоляторов данного полюса;
с прямолинейным движением вдоль размыкаемого промежутка либо только ножа, либо ножа совместно с изолятором (катящегося типа);
со складывающимся ножом, со сложным движением (поворот и складывание) ножа и др.
Основные требования, предъявляемые к разъединителям:
1. Контактная система должна надежно пропускать номинальный ток сколь угодно длительное время и иметь необходимую динамическую и термическую стойкость.
2. Разъединитель и механизм его привода должны надежно
удерживаться во включенном положении при протекании тока КЗ. В
отключенном положении подвижный контакт должен быть надежно
фиксирован.
3. Промежуток между разомкнутыми контактами должен иметь
повышенную электрическую прочность.
4. Привод разъединителя целесообразно блокировать с выключателем.
5.Каким должно быть расчетное контактное давление при соединении плоских алюминиевых шин
Нормальное контактное давление устанавливается с таким расчетом, чтобы, не вызывая текучести материала шин, болтов, гаек при номинальных режимах и при прохождении токов КЗ, обеспечить более низкое сопротивление контактного соединения. Практикой установлено, что при соединении плоских алюминиевых шин расчетное контактное давление должно быть не менее 15 и не менее 10 кПа для медных шин;непосредственное соединение проводников и зажимов допускают в случае выполнения их из одинаковых или однородных материалов (например, из меди и ее сплавов), а также при покрытии контактных поверхностей зажимов и проводников кадмием, оловом или цинкооловянистым сплавом;при контактных соединениях меди с алюминием, образующих в присутствии влаги электролитическую пару, во избежание электролитической коррозии, разрушающей контактное соединение, применяют медно-алюминиевые переходные детали. Например, для присоединения алюминиевой шины к аппаратному зажиму, изготовленному из сплава меди, к шине приваривают наконечник из меди или конец алюминиевой шины армируют с помощью холодной сварки медными накладками толщиной 1—1,5 мм;
6.Методы измерения температуры нагрева электроустановок .
Метод термометра , метод термопары, измерения сопротивления , метод измерения инфракрасного излучения .