
- •2. История микроскопической техники.
- •3. Первые микроскописты.
- •4. Описание растительной клетки и ткани р.Гуком (1665), м.Мальпиги (1671) и н.Грю (1671).
- •5. Микроскопические наблюдения а.Левенгука (1679).
- •6. Работы школ я.Пуркинье (1837) и и.Мюллера (1838).
- •7. Подготовка клеточной теории.
- •8. Обоснование клеточной теории т. Шванном (1839).
- •9. Основные положения клеточной теории.
- •10. Развитие клеточной теории.
- •11. Вклад р.Вирхова (1859) в учение о клетке.
- •12. Современное положение клеточной теории.
- •13. Место цитологии среди других биологических дисциплин.
- •14. Связь цитологии с молекулярной биологией, генетикой, эмбриологией, физиологией и биохимией.
- •15.Методы цитологии. Микроскопирование.
- •16. Разрешающая способность микроскопа.
- •17.Световая микроскопия.
- •18.Метод «замораживания-скалывания» и «замораживания-травления».
- •19.Фракционирование клеток и клеточного содержимого.
- •20.Метод дифференциального центрифигурирования.
- •21.Константа седиментации.
- •22.Структурная организация клетки.
- •23.Цитоплазма.
- •24.Общий химический состав цитоплазмы.
- •25. Цитоплазма как сложно структурированная система.
- •27.Плазматические мембраны.
- •28.История открытия и изучения.
- •29.Модели организации клеточных мембран.
- •31. Липидный бислой.
- •32. Мембранные белки.
- •33. Мембранные углеводы.
- •34. Ассиметричность плазматической мембраны.
- •35. Мембрана как двумерная жидкость.
- •35. Компартментализация.
- •36)Функции плазматической мембраны клетки.
- •37)Транспорт веществ через плазматическую мембрану.
- •38) Пассивный и активный транспорт.
- •39)Транспорт через мембрану малых молекул.
- •40) Транспорт ионов.
- •41) Белки – переносчики, каналы и насосы.
- •42) Мембранный транспорт макромолекул и частиц: эндоцитоз и экзоцитоз (фагоцитоз и пиноцитоз).
- •43)Роль клатриновых белков в процессе эндоцитоза
- •44)Эндосомы
- •46)Понятие и общая характеристика.
- •47)Гранулярная эндоплазматическая сеть.
- •48)Гладкая эндоплазматическая сеть.
- •49)Особенности строения.
- •50) Связь эпс с синтезом полисахаридов и липидов.
- •51)Дезактивация ядовитых соединений.
- •52)Накопление ионов кальция в мышечной ткани.
- •53)Рибосомы.
- •54)История изучения.
- •55)Молекулярная организация рибосом.
- •56)Функции.
- •57)Синтез белков в гиалоплазме.
- •58)Синтез, накопление и транспорт синтезированного белка в системе эпс.
- •59)Теория сигиальной последовательности.
- •60)Аппарат Гольджи.
- •61 История открытия.
- •63.Общая характеристика, ультраструктура и молекулярная организация.
- •64.Функции аппарата Гольджи:
- •66 История открытия.
- •68 Лизосомальный аппарат клетки. Классификация лизосом.
- •69.Функции лизосом.
- •70 Гетерофагия
- •72. Аутофагия.
- •75. Биосинтез мембран.
- •76. Рециклирование мембран.
- •77.Общая морфология митоxондрии
- •78.История открытия.
- •79.Методы изучения митохондрий.
- •80.Форма и кол-во.
- •81.Хондриом.
- •82.Ультраструктура митохондрий.
- •83.Роль митохондрий в синтезе и накоплении атф
- •84.Окислительное фосфорилирование у бактерий
- •85.Гипотезы синтеза атф (химическая, хемиосмотическая).
- •86.Происхождение митохондрий в онто- и филогенезе.
- •87. Ядро.
- •88.Интерфазное ядро.
- •89.Ядерная оболочка.
- •90. Строение порового комплекса.
- •91.Ядерно-цитоплазматический транспорт.
- •92.Ядерная ламина; структура и функции.
- •94.Диффузный и конденсированный хроматин (эу- и гетерохроматин).
- •95.Функциональное значение.
- •96.Молекулярная организация хроматина.
- •98.Уровни структурной организации хромосом.
- •99.Ядрышко.
- •100.Число ядрышек и их хромосомное происхождение.
- •101.Ультраструктура ядрышка.
- •102.Функции ядрышка.
- •103.Цитоскелет.
- •104.Функции цитоскелета.
- •105.Классификация.
- •106.Микрофиламенты, молекулярная организация.
- •107.Свойства актиновых филаментов.
- •109. Микротрубочки, тонкое строение, молекулярная организация.
- •110. Тубулин
- •111.Белки транслокаторы, или моторные белки.
- •112.Промежуточные филаменты
- •114.Ультраструктура и молекулярная организация промежуточных филаментов.
- •115. Жизненный цикл клетки (клеточный цикл)
- •116.Пресинтетическая, синтетическая и постсинтетическая фазы.
- •116.Митоз
- •117.Стадии митоза, их продолжительность и характеристика. Профаза, метафаза, анафаза, телофаза.
- •118.Организация ахроматинового веретена деления.
- •119.Механизм движения хромосом.
- •120.Цитокинез растительной и животной клеток.
- •121.Образование фрагмопласта.
- •122.Клеточные органоиды в период деления клеток.
- •123.Регуляция митоза.
- •125.Современные представления об амитозе.
99.Ядрышко.
В ядре – от 1 до 8.Наиболее плотная структура ядра, это не самостоятельная структура, это производное участка ДНК. Образованы специальными участками (петлями, или зонами вторичной перетяжки) хромосом, так называемыми ядрышковыми организаторами, содержащими гены, кодирующие рРНК. Вокруг этих участков и формируются ядрышки. В ядрышке происходит синтез рРНК, ее созревание, сборка рибосомных субчастиц. Имеют различные размеры, форму, плотность и область распределения в зависимости от функциональной активности клетки. Не имеют собственной мембранной оболочки, хорошо различимы под световым и электронным микроскопом. Самая высокая концентрация белка в клетке наблюдается именно в ядрышке. Ядрышко исчезает в профазе митоза, когда ядрышковые организаторы "растаскиваются" в ходе конденсации соответствующих хромосом, вновь формируясь в телофазе. Под электронным микроскопом в ядрышке выделяют несколько компонентов. Плотный фибриллярный компонент –образована участками слабоспирализованной ДНК, РНК и белками, тут происходит транскрипция рРНК.Снаружи от плотного фибриллярного компонента расположен гранулярный компонент - скопление созревающих рибосомных субчастиц.
100.Число ядрышек и их хромосомное происхождение.
Общее число ядрышек на ядро определяется числом ядрышковых организаторов (специальных участков хромосом, содержащих гены рРНК, такие хромосомы, как правило, имеют вторичные перетяжки, зоны которых представляют собой места, где идет развитие ядрышек) и увеличивается согласно плоидности ядра. Однако часто количество ядрышек на ядро бывает меньше числа ядрышковых организаторов. Было показано, что ядрышки могут сливаться; кроме того, в образовании одного ядрышка иногда участвует несколько организаторов.Еще в работах М.С.Навашина (1934) было показано, что хромосомный локус, который в нормальных условиях образует крупное ядрышко , становится неактивным, когда после гибридизации в ядре появляется более “сильный” локус на другой хромосоме. Тот факт, что в определенных условиях может подавляться активность одних ядрышковых организаторов или же повышаться активность других, бывших до этого в латентном, скрытом состоянии, указывает на то, что в клетках поддерживается определенный баланс количества ядрышкового материала или, другими словами, регулируется “валовая” продукция, выдаваемая ядрышками.
Исходя из перечисленных выше фактов, можно сделать следующие заключения:
- образования ядрышек и их число связаны с числом и активностью ядрышковых организаторов;
- изменения в числе ядрышек в клетках данного типа могут происходить за счет слияния ядрышек или за счет сдвигов в хромосомном балансе клетки.
101.Ультраструктура ядрышка.
С помощью электронной микроскопии в ядрышке выделяют несколько компонентов:
1. Фибриллярный компонент – тонкофибриллярная структура, образованная учатками слабоспирализованной ДНК, считывающимися с нее молекулы РНК и белками.Занимает центральные области ядрышка. Тут происходит транскрипция рРНК. Этот хроматин и внутриядрышковая сеть ДНК являются единой системой и представляют собой интегральный компонент ядрышка.
2. Гранулярный (зернистый) компонент – это образующиеся субъединицы рибосом, располагается на периферии ядрышка, расположен снаружи от фибриллярного компонента.
3. Зона ядрышкового организатора – петли ДНК, или зона вторичной перетяжки в период митоза. Вокруг него в интерфазу образуется ядрышко.
4. Зона неактивной ДНК – в сильноспирализованном состоянии вокруг ядрышка (околоядрышковый гетерохроматин).