Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции_Турбины_ТВТ.docx
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
882.66 Кб
Скачать

1.5. Конструкция типовой газотурбинной установки

Рассмотрим конструкцию газотурбинной установки на примере ГТ-100-750 (ЛМЗ) (рис. 1.5.).

Рис. 1.5. Продольный разрез ГТ-100-750

Газотурбинная установка ГТ-100-750 предназначена для работы в энергетических системах для покрытия пиковых нагрузок, может быть использована для несения базовой нагрузки, рассчитана для работы на газообразном и жидком топливе. При температуре наружного воздуха 278 К температура перед турбинами 1023 К, мощность составляет 100 МВт, КПД – 28 %.

ГТ-100-750 выполнена по прямой, двухвальной схеме: состоит из компрессора низкого (1) и высокого (3) давления, воздухоохладителя (2), турбин высокого (5) и низкого (8) давления, камер сгорания высокого (4) и низкого (6) давления и электрогенератора (7). Турбина высокого давления вращает компрессор высокого давления, а турбина низкого давления вращает компрессор низкого давления и электрогенератор. Компрессор, турбины и камеры сгорания имеют общий корпус, образуют блок турбомашин.

Компрессор низкого давления восьмиступенчатый. Корпус сварной конструкции с литым входным патрубком, направляющие лопатки устанавливаются в обоймах. Ротор наборный, состоит из отдельных дисков, насаженных на вал. Проточная часть выполнена с постоянным наружным диаметром 2070 мм. производительность компрессора ~ 435 кг/с. КПД проточной части 88 %. Высота лопаток первой ступени 520 мм, окружная скорость 325 м/с.

Компрессор высокого давления 13-ступенчатый. Корпус сварнолитой конструкции, ротор барабанного типа.

Турбина высокого давления трёхступенчатая, низкого давления – пятиступенчатая. Роторы турбин сборные, состоят из отдельных дисков: ротор турбины высокого давления из трёх, ротор турбины низкого давления – из пяти отдельных дисков, соединённых болтами. Стяжные болты размещены вблизи корневого диаметра лопаток.

В установке широко применено охлаждение воздухом узлов и деталей, подверженных воздействию высоких температур. Охлаждение роторов производится продувкой воздуха через щелевые зазоры между гребнями дисков и хвостовиками лопаток. Воздух на охлаждение (отводится после компрессора) проходит концевые уплотнения турбин и подводится к хвостовому креплению рабочих лопаток. Охлаждение обойм направляющих аппаратов и сегментов производится воздухом, отбираемым для этой цели из компрессора: сначала первых ступеней, а затем и последующих ступеней. Интенсивному охлаждению подвергаются внутренние подшипники, работающие в условиях высоких температур.

Камеры сгорания высокого и низкого давления имеют по двенадцати жаровых труб каждая. В каждой жаровой трубе имеется горелка, рассчитанная на сжигание жидкого и газообразного топлива. Тепло отработавших газов используется для подогрева воды в специальном теплофикационном подогревателе.

Пуск установки производится через редуктор от специальной пусковой турбины, которая может работать на топливном газе или паре.

1.6. Паротурбинная установка и её экономичность

Простейшая паротурбинная установка состоит из питательного насоса (1), котла (2), пароперегревателя (3), паровой турбины (4), конденсатора (5) и электрического генератора (6) (рис. 1.6.).

Рис. 1.6. Принципиальная схема паротурбинной установки:

1 – питательный насос; 2 – котёл; 3 – пароперегреватель; 4 – турбина;

5 – конденсатор; 6 – электрогенератор

Рабочим веществом паротурбинной установки является водяной пар. В паросиловых установках применяется цикл с полной конденсацией отработавшего пара в конденсаторе, называемый циклом Ренкина. Идеальный цикл Ренкина для паросиловой турбинной установки, работающей на перегретом паре, изображён в Т, s-диаграмме на рис. 1.7.

Рис. 1.7. Идеальный цикл Ренкина для паросиловой турбинной установки, работающей на перегретом паре, в Т, s-диаграмме

На этой диаграмме показаны: а’а – процесс адиабатного сжатия воды в питательном насосе; ab – процесс нагрева воды в котле до температуры кипения; bc – испарение воды в котле; cd – перегрев пара в пароперегревателе; de – изоэнтропное расширение пара в турбине; ea – конденсация отработавшего пара в конденсаторе.

Процессы нагрева, испарения и перегрева воды в котле происходят при постоянном давлении. Следовательно, всё количество теплоты q1, переданное 1 кг воды и пара, целиком идёт на повышение энтальпии рабочего вещества от энтальпии питательной воды hп.в до энтальпии свежего пара h0 и равно их разности:

q1 = h0hп.в.

Это количество теплоты в Т, s-диаграмме изображается площадью 1abcd21.

Из турбины пар поступает в конденсатор, где при постоянном давлении конденсируется и отдаёт теплоту q2 охлаждающей воде. Эту теплоту можно определить как разность энтальпий отработавшего пара при изоэнтропном расширении его в турбине hкt и конденсата (в идеальном цикле Ренкина):

q2 = hкt – .

Полезная теоретическая работа 1 кг пара равна разности между подведённой и отведённой теплотой:

L = q1q2 = (h0hп.в) – (hкt – ) = (h0hкt) – (hп.в – ).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]