- •Глава I.
- •Глава II.
- •Глава III. Термодеструктивные процессы 36
- •Глава IV.
- •Глава V.
- •Глава VI.
- •Глава VII.
- •Глава VIII.
- •Глава IX.
- •Глава X.
- •Глава XI.
- •Глава XII.
- •Глава XIII.
- •Глава XIV.
- •Предисловие
- •Условные обозначения на схемах технологических установок
- •Глава I Подготовка нефтей к переработке
- •Установка стабилизации нефтей на промысле
- •Установка обессоливания и обезвоживания нефтей на нпз
- •Глава II Первичная перегонка нефти и вторичная перегонка бензиновых дистиллятов
- •Установка атмосферной перегонки нефти
- •Установка атмосферно-вакуумной перегонки нефти
- •Установка вторичной перегонки бензинового дистиллята
- •Атмосферно-вакуумная установка с секцией вторичной перегонки бензина
- •Установка двухступенчатой вакуумной перегонки мазута
- •Установка вакуумной перегонки для разделения масляных фракций, гачей и петролатумов
- •Глава III Термодеструктивные процессы Установки висбрекинга тяжелого сырья
- •Установки деструктивной перегонки мазутов и гудронов
- •Установка термического крекинга для производства термогазойля
- •Установка замедленного коксования в необогреваемых камерах
- •Установка непрерывного коксования в псевдоожиженном слое кокса (термоконтактный крекинг)
- •Установка пиролиза нефтяного сырья
- •Глава IV Термокаталитические процессы Каталитический крекинг
- •Установка каталитического крекинга с прямоточным реактором
- •Установка каталитического крекинга 1-а/1-м
- •Каталитический риформинг и изомеризация
- •Установка риформинга со стационарным слоем катализатора
- •Установка риформинга с движущимся слоем платинового катализатора
- •Установка каталитической изомеризации пентанов и гексанов
- •Глава V Гидрогенизационные процессы Гидроочистка и гидрообессеривание
- •Установка гидроочистки дистиллята дизельного топлива
- •Установка гидрокрекинга в стационарном слое катализатора
- •Установка гидрокрекинга с псевдоожиженным слоем катализатора
- •Установка гидродоочистки нефтяных масел
- •Установка гидроочистки керосина с применением высокотемпературной сепарации
- •Гидроочистка тяжелых и вакуумных газойлей
- •Глава VI Разделение и переработка газов Установка очистки углеводородных газов от сероводорода раствором этаноламина
- •Установка сернокислотного алкилирования изобутана бутиленами
- •Установка для производства водорода методом паровой каталитической конверсии легких углеводородов
- •Глава VII Деасфальтизация нефтяных остатков
- •Установка одноступенчатой деасфальтизации гудронов жидким пропаном
- •Установка двухступенчатой деасфальтизации гудронов жидким пропаном
- •Установка деасфальтизации бензином (процесс добен)
- •Глава VIII Очистка масляного сырья избирательными растворителями
- •Установка очистки нефтяных масляных фракций фенолом
- •Установка очистки нефтяных масляных фракций фурфуролом
- •Установка очистки нефтяных остатков парными растворителями без предварительной деасфальтизации сырья
- •Глава IX Депарафинизация и обезмасливание нефтяного сырья Низкотемпературные процессы
- •Установка депарафинизации с двухступенчатым фильтрованием
- •Установка депарафинизации и обезмасливания
- •Установка глубокой депарафинизации масляных рафинатов
- •Установка депарафинизации с применением кристаллизатора смешения
- •Отделение регенерации растворителей из растворов депарафинированного масла, гача или петролатума
- •Депарафинизация с использованием карбамида
- •Установка карбамидной депарафинизации инхп ан АзСср и внипИнефти
- •Установка карбамидной депарафинизации ГрозНии и Грозгипронефтехима
- •Глава X Адсорбционные процессы очистки, доочистки и разделения Установка непрерывной адсорбционной очистки масляного сырья
- •Установка контактной доочистки масел отбеливающими землями
- •Установка «Парекс»
- •Глава XI Производство пластичных смазок Общая характеристика технологических стадий и процессов производства смазок
- •Установка периодического производства мыльных и углеводородных смазок
- •Установка периодического производства мыльных смазок с применением контактора
- •Установка полунепрерывного производства мыльных смазок
- •Установка полунепрерывного производства смазок на сухих мылах
- •Установка непрерывного производства мыльных смазок
- •Установка производства смазок на неорганических загустителях
- •Глава XII Производство битума, технического углерода и других продуктов Битумная установка непрерывного действия колонного типа
- •Битумная установка с реактором змеевикового типа
- •Технологическая схема производства технического углерода термическим разложением и гранулирования «мокрым» способом
- •Установка производства серы из технического сероводорода
- •Установка производства серной кислоты из сероводорода
- •Глава XIII Очистка нефтепродуктов растворами щелочи
- •Очистка углеводородных газов
- •Очистка жидких углеводородов
- •Очистка раствором щелочи с применением катализатора
- •Глава XIV Комбинированные установки производства нефтепродуктов
- •Литература
- •Глава I
- •Глава II
- •Глава III
- •Глава IV
- •Глава V
- •Глава VI
- •Глава VII
- •Глава VIII
- •Глава IX
- •Глава X
- •Глава XI
- •Глава XII
- •Глава XIII
- •Глава XIV
- •Приложение Материальные балансы процессов. Качество сырья и продуктов. Гидрогенизационные процессы получения моторных топлив.
- •Процессы гидрообессеривания деасфальтизатов и мазутов.
- •Гидрогенизационные процессы переработки нефтяных остатков.
- •Гидрогенизационные процессы при получении нефтяных масел.
Установка непрерывного коксования в псевдоожиженном слое кокса (термоконтактный крекинг)
Назначением процесса термоконтактного крекинга (ТКК) является получение дистиллятов, богатых ароматическими углеводородами, и газа, содержащего до 50 % (об.) непредельных углеводородов. В качестве сырья используют высокосернистые нефтяные остатки — гудрон вакуумной перегонки или мазут атмосферной перегонки.
Процесс может быть направлен на получение сырья для нефтехимии: увеличенного выхода газа, более богатого непредельными углеводородами, жидких продуктов, из которых могут быть выделены бензол, толуол и нафталин. Тяжелые фракции могут являться сырьем для производства технического углерода. В этом случае режим процесса более жесткий: температура в реакторе 600 °С и коксонагревателе 670—700°С. Газойли коксования используют на некоторых заводах (иногда после гидроочистки) как компоненты сырья установки каталитического крекинга.
Установка термоконтактного крекинга состоит из реакторного блока (реактор, коксонагреватель, сепаратор-холодильник кокса, воздуходувка и др.) и блока разделения (парциальный конденсатор, ректификационная колонна, отпарная колонна, газосепаратор). Технологическая схема установки представлена на рис. III-7.
Сырье — гудрон, отводимый с низа вакуумной колонны, или мазут с низа атмосферной колонны — подается насосом 14 в реактор 11 через систему распылителей 9 (форсуночного типа) под уровень псевдоожиженного слоя частиц кокса, непрерывно циркулирующих в реакторном блоке и обеспечивающих подвод тепла в реактор. Форсунки размещаются обычно по высоте слоя в несколько ярусов, на крупных установках их число достигает 100.
Процесс крекинга осуществляется на поверхности горячих частиц кокса при температуре (600—620 °С). Продукты коксования — газы и пары — по выходе из слоя проходят через систему циклонных сепараторов 12 для отделения коксовой пыли и поступают в скруббер — парциальный конденсатор 13, который для уменьшения закоксовывания передаточных линий расположен непосредственно на реакторе 11. На верх скруббера в качестве орошения подается охлажденный тяжелый газойль. За счет контакта паров продукта с тяжелым газойлем конденсируются наиболее тяжелые компоненты паров. Сконденсированная смесь (рециркулят) забирается с низа скруббера 13 и направляется насосом 15 в реактор 11.
Частицы кокса-теплоносителя с отложившимся на них тонким слоем образовавшегося в процессе кокса (балансового кокса) опускаются вниз отпарной секции реактора, при этом они продуваются встречным потоком водяного пара. Далее они перемещаются по изогнутому трубопроводу 8 (пневмотранспорт) в коксонагреватель 5. С помощью воздуходувки 1 под распределительную решетку 6 коксонагревателя подается воздух в объеме, необходимом для нагрева циркулирующего кокса до заданной температуры. Кокс нагревается за счет теплоты сгорания части балансового кокса. Продукты сгорания (дымовые газы) проходят двухступенчатые циклоны 4, где от них отделяются мелкие частицы кокса, и поступают в паровой котел утилизатор (на схеме не показан).
Нагретый в коксонагревателе 5 кокс возвращается по изогнутому трубопроводу 7 (пневмотранспорт) в реактор 11. Транспортирующей средой также является водяной пар. Поскольку количество сжигаемого кокса меньше вновь образующегося, то избыток его в виде фракции более крупных частиц непрерывно выводится из системы через сепаратор-холодильник 3. Менее крупные частицы возвращаются из сепаратора-холодильника в коксонагреватель 5. Отделение мелких частиц кокса от крупных обеспечивается с помощью водяного пара, подаваемого вниз сепаратора. Выходящий с низа сепаратора 3 кокс транспортируется водяным паром в приемник (на схеме не показан). Размеры частиц кокса, циркулирующего в реакторном блоке колеблются в пределах от 0,075 до 0,300 мм, а частиц балансового кокса — от 0,4 мм и выше.
Из коксонагревателя 5 к верхнему днищу реактора 11 по линии 10 подается «горячая струя» частиц кокса. Таким образом, здесь повышается концентрация частиц кокса в парах: частицы, механически воздействуя на устья циклонов 12, предотвращают их закоксовывание.
Пары бензина и воды, а также газ коксования, выходящие с верха колонны 18, охлаждаются в аппарате воздушного охлаждения 22 и холодильнике 23 и поступают в водогазоотделитель 24. Здесь происходит разделение продуктов на жирный газ, нестабильный бензин и водный конденсат. Бензин насосом 29 частично подается как орошение на верхнюю тарелку колонны 18, а балансовое его количество после теплообменника 25 направляется на стабилизацию.
С низа отпарной колонны 19 насосом 21 выводится легкий газойль. Обычно он используется как теплоноситель в теплообменнике 25 для нагрева нестабильного бензина (этот бензин передается в блок физической стабилизации, который на схеме не показан) утилизатор (на схеме не показан). Далее легкий газойль доохлаждается в холодильнике воздушного охлаждения 26 и выводится с установки. Тяжелый газойль выводится с низа колонны 18, насосом 20 прокачивается через парогенератор 27 и аппарат воздушного охлаждения 28. Частично тяжелый газойль используется как орошение в скруббере 13, а балансовое его количество отводится с установки.
Избыток тепла отводится из колонны 18 промежуточным циркуляционным орошением (насос 16 и аппарат воздушного охлаждения 17). Топка 2 под давлением служит для разогрева системы при пуске.
Технологический режим реакторного блока:
Температура, °С Реактора Коксонагревателя Давление в реакторе и коксонагревателе, МПа Кратность циркуляции кокс: сырьё Массовая скорость подачи сырья |
510-540 600-620 0,14-0,16 7-8 0,6-1,0 |
Ниже приводятся выходы продуктов коксования при переработке мазута и гудрона ромашкинской нефти:
Показатели |
Мазут |
Гудрон |
Характеристика сырья Плотность при 20°С, кг/м3 Коксуемость, % (масс.) Содержание серы, % (масс.) Материальный баланс Взято, % (масс.) Сырьё |
967 11,5 2,55
100,0 |
1025 19,0 3,15
100,0 |
Итого |
100,0 |
100,0 |
Получено, % (масс.) Газ Бензин Легкий газойль Тяжелый газойль Кокс в т.ч. товарный |
8,4 10,7 9,9 59,5 11,5 6,3 |
15,7 20,0 19,2 24,6 20,5 11,5 |
Итого |
100,0 |
100,0 |
Учитывая высокое содержание серы в порошкообразном коксе, вызывающее значительное образование диоксида серы в продуктах сгорания, было предложено этот кокс газифицировать. В зарубежной литературе процесс термоконтактного крекинга, совмещенный с газификацией кокса, называют флексикокинг.
