- •Глава I.
- •Глава II.
- •Глава III. Термодеструктивные процессы 36
- •Глава IV.
- •Глава V.
- •Глава VI.
- •Глава VII.
- •Глава VIII.
- •Глава IX.
- •Глава X.
- •Глава XI.
- •Глава XII.
- •Глава XIII.
- •Глава XIV.
- •Предисловие
- •Условные обозначения на схемах технологических установок
- •Глава I Подготовка нефтей к переработке
- •Установка стабилизации нефтей на промысле
- •Установка обессоливания и обезвоживания нефтей на нпз
- •Глава II Первичная перегонка нефти и вторичная перегонка бензиновых дистиллятов
- •Установка атмосферной перегонки нефти
- •Установка атмосферно-вакуумной перегонки нефти
- •Установка вторичной перегонки бензинового дистиллята
- •Атмосферно-вакуумная установка с секцией вторичной перегонки бензина
- •Установка двухступенчатой вакуумной перегонки мазута
- •Установка вакуумной перегонки для разделения масляных фракций, гачей и петролатумов
- •Глава III Термодеструктивные процессы Установки висбрекинга тяжелого сырья
- •Установки деструктивной перегонки мазутов и гудронов
- •Установка термического крекинга для производства термогазойля
- •Установка замедленного коксования в необогреваемых камерах
- •Установка непрерывного коксования в псевдоожиженном слое кокса (термоконтактный крекинг)
- •Установка пиролиза нефтяного сырья
- •Глава IV Термокаталитические процессы Каталитический крекинг
- •Установка каталитического крекинга с прямоточным реактором
- •Установка каталитического крекинга 1-а/1-м
- •Каталитический риформинг и изомеризация
- •Установка риформинга со стационарным слоем катализатора
- •Установка риформинга с движущимся слоем платинового катализатора
- •Установка каталитической изомеризации пентанов и гексанов
- •Глава V Гидрогенизационные процессы Гидроочистка и гидрообессеривание
- •Установка гидроочистки дистиллята дизельного топлива
- •Установка гидрокрекинга в стационарном слое катализатора
- •Установка гидрокрекинга с псевдоожиженным слоем катализатора
- •Установка гидродоочистки нефтяных масел
- •Установка гидроочистки керосина с применением высокотемпературной сепарации
- •Гидроочистка тяжелых и вакуумных газойлей
- •Глава VI Разделение и переработка газов Установка очистки углеводородных газов от сероводорода раствором этаноламина
- •Установка сернокислотного алкилирования изобутана бутиленами
- •Установка для производства водорода методом паровой каталитической конверсии легких углеводородов
- •Глава VII Деасфальтизация нефтяных остатков
- •Установка одноступенчатой деасфальтизации гудронов жидким пропаном
- •Установка двухступенчатой деасфальтизации гудронов жидким пропаном
- •Установка деасфальтизации бензином (процесс добен)
- •Глава VIII Очистка масляного сырья избирательными растворителями
- •Установка очистки нефтяных масляных фракций фенолом
- •Установка очистки нефтяных масляных фракций фурфуролом
- •Установка очистки нефтяных остатков парными растворителями без предварительной деасфальтизации сырья
- •Глава IX Депарафинизация и обезмасливание нефтяного сырья Низкотемпературные процессы
- •Установка депарафинизации с двухступенчатым фильтрованием
- •Установка депарафинизации и обезмасливания
- •Установка глубокой депарафинизации масляных рафинатов
- •Установка депарафинизации с применением кристаллизатора смешения
- •Отделение регенерации растворителей из растворов депарафинированного масла, гача или петролатума
- •Депарафинизация с использованием карбамида
- •Установка карбамидной депарафинизации инхп ан АзСср и внипИнефти
- •Установка карбамидной депарафинизации ГрозНии и Грозгипронефтехима
- •Глава X Адсорбционные процессы очистки, доочистки и разделения Установка непрерывной адсорбционной очистки масляного сырья
- •Установка контактной доочистки масел отбеливающими землями
- •Установка «Парекс»
- •Глава XI Производство пластичных смазок Общая характеристика технологических стадий и процессов производства смазок
- •Установка периодического производства мыльных и углеводородных смазок
- •Установка периодического производства мыльных смазок с применением контактора
- •Установка полунепрерывного производства мыльных смазок
- •Установка полунепрерывного производства смазок на сухих мылах
- •Установка непрерывного производства мыльных смазок
- •Установка производства смазок на неорганических загустителях
- •Глава XII Производство битума, технического углерода и других продуктов Битумная установка непрерывного действия колонного типа
- •Битумная установка с реактором змеевикового типа
- •Технологическая схема производства технического углерода термическим разложением и гранулирования «мокрым» способом
- •Установка производства серы из технического сероводорода
- •Установка производства серной кислоты из сероводорода
- •Глава XIII Очистка нефтепродуктов растворами щелочи
- •Очистка углеводородных газов
- •Очистка жидких углеводородов
- •Очистка раствором щелочи с применением катализатора
- •Глава XIV Комбинированные установки производства нефтепродуктов
- •Литература
- •Глава I
- •Глава II
- •Глава III
- •Глава IV
- •Глава V
- •Глава VI
- •Глава VII
- •Глава VIII
- •Глава IX
- •Глава X
- •Глава XI
- •Глава XII
- •Глава XIII
- •Глава XIV
- •Приложение Материальные балансы процессов. Качество сырья и продуктов. Гидрогенизационные процессы получения моторных топлив.
- •Процессы гидрообессеривания деасфальтизатов и мазутов.
- •Гидрогенизационные процессы переработки нефтяных остатков.
- •Гидрогенизационные процессы при получении нефтяных масел.
Установки деструктивной перегонки мазутов и гудронов
Процесс деструктивной перегонки мазутов разработан ГрозНИИ для увеличения ресурсов газойлевых фракций — сырья для установок каталитического крекинга. Особенность процесса — сочетание перегонки сырья с термическим разложением его смолистого остатка в испарителе. Если бензиновые и керосиновые фракции образуются в основном в змеевике печи, то газойлевые фракции — в испарителе, работающем при сравнительно умеренной (420— 425 °С) температуре и невысоком избыточном давлении. Длительность пребывания крекируемой жидкости в испарителе составляет примерно 1,5 ч. Температура сырья на выходе из печи равна 460—475 °С.
Установка непрерывного действия с однократным пропуском сырья состоит из высокотемпературной секции, которая включает нагревательную печь и испаритель, и секций фракционирования и охлаждения (рис. III-3).
Мазут, поступающий с нефтеперегонной установки, насосом 8 через теплообменники 6 и 5 подается в змеевик печи 2. Пройдя по конвекционным трубам змеевика, мазут поступает в радиантные трубы (двухрядный экран). Во второй ряд радиантных труб вводится перегретый водяной пар. По выходе из радиантного змеевика смесь подается в нижнюю часть испарителя 3; туда же, но ниже ввода сырья подается и перегретый водяной пар. В испарителе 3 смесь разделяется на паровую и жидкую фазы. Объем испарителя достаточен для длительного пребывания в нем жидкости, продуваемой перегретым водяным паром.
С целью уменьшения вязкости тяжелого остатка, отводимого из испарителя поршневым насосом 4, предусмотрена возможность добавления разбавителя к сырью с помощью насоса 2. В качестве разбавителя используется часть получаемой на установке дизельной фракции, предварительно охлажденной. Выходящая из испарителя сверху смесь паров с небольшим количеством крекинг-газов является теплоносителем в теплообменнике 5; отсюда углеводородный конденсат, газы и пары поступают под нижнюю тарелку ректификационной колонны 9. Между 6 и 7-й тарелками этой колонны расположено внутреннее днище. Достигнув его, восходящий поток паров направляется в теплообменник 6. Образующаяся здесь жидкая флегма стекает на 5-ую тарелку колонны, а пары вводятся под 7-ую тарелку. Общее число тарелок в колонне — 15.
Нижний продукт колонны представляет собой газойль с началом кипения около 340 °С. Фракция дизельного топлива до вывода ее из отпарной колонны 10 продувается на шести тарелках водяным паром.
На схеме не показаны другие аппараты секции фракционирования, такие как конденсатор-холодильник для выходящих из колонны 9 сверху паров в смеси с газами и приемник орошения.
Для процесса деструктивной перегонки термического крекинга мазута была приспособлена одна из установок типа «Винклер—Кох». Недостатком рассмотренной схемы, но не процесса является весьма слабое использование вторичного тепла, особенно тепла тяжелого остатка, откачиваемого из испарителя. При высокой температуре исходного мазута его можно направлять, минуя теплообменники, непосредственно в змеевик печи. В этом случае необходимо пересмотреть схемы, в частности, с целью рационального использования избыточного тепла и теплообменных аппаратов.
Ниже приведен режим работы установки при деструктивной перегонке сернистого мазута (плотность при 20 °С 942 кг/м3; коксуемость 9,5 % масс., содержание серы 2 % масс. и фракций до 350 °С — 4,7 % масс.):
Температура сырья на выходе из печи, оС Расход водяного пара, % (масс.) на мазут в радиантные трубы в низ испарителя Длительность пребывания стекла в испарителе, мин Избыточное давление в испарителе, Мпа Скорость паров в испарителе, м/с Удельная тепловая напряжённость радиантных труб печи, МДж/(м2ч) |
460-475
1,5-2,0 5,5-7,0 40-120 0,2-0,3 ≈0,26 67,0-71,2 |
Выходе продуктов при обычной и деструктивной перегонке сернистого мазута (плотностью 942 кг/м3, 2% масс. серы) даны ниже в % (масс.)
Выход, % (масс.) |
Обычная перегонка |
Деструктивная перегонка |
Газ Бензин (кк 205оС) Фракция 205-350оС Фракция 350-550оС Остаток >550оС Итого |
- - 4,7 51,9 43,4 100,0 |
1,70 3,84 11,83 60,39 22,24 100,00 |
Таким образом, выход дистиллятов увеличился с 56,6 при обычной перегонке до 76,06 % (масс.) при деструктивной.
