- •Глава I.
- •Глава II.
- •Глава III. Термодеструктивные процессы 36
- •Глава IV.
- •Глава V.
- •Глава VI.
- •Глава VII.
- •Глава VIII.
- •Глава IX.
- •Глава X.
- •Глава XI.
- •Глава XII.
- •Глава XIII.
- •Глава XIV.
- •Предисловие
- •Условные обозначения на схемах технологических установок
- •Глава I Подготовка нефтей к переработке
- •Установка стабилизации нефтей на промысле
- •Установка обессоливания и обезвоживания нефтей на нпз
- •Глава II Первичная перегонка нефти и вторичная перегонка бензиновых дистиллятов
- •Установка атмосферной перегонки нефти
- •Установка атмосферно-вакуумной перегонки нефти
- •Установка вторичной перегонки бензинового дистиллята
- •Атмосферно-вакуумная установка с секцией вторичной перегонки бензина
- •Установка двухступенчатой вакуумной перегонки мазута
- •Установка вакуумной перегонки для разделения масляных фракций, гачей и петролатумов
- •Глава III Термодеструктивные процессы Установки висбрекинга тяжелого сырья
- •Установки деструктивной перегонки мазутов и гудронов
- •Установка термического крекинга для производства термогазойля
- •Установка замедленного коксования в необогреваемых камерах
- •Установка непрерывного коксования в псевдоожиженном слое кокса (термоконтактный крекинг)
- •Установка пиролиза нефтяного сырья
- •Глава IV Термокаталитические процессы Каталитический крекинг
- •Установка каталитического крекинга с прямоточным реактором
- •Установка каталитического крекинга 1-а/1-м
- •Каталитический риформинг и изомеризация
- •Установка риформинга со стационарным слоем катализатора
- •Установка риформинга с движущимся слоем платинового катализатора
- •Установка каталитической изомеризации пентанов и гексанов
- •Глава V Гидрогенизационные процессы Гидроочистка и гидрообессеривание
- •Установка гидроочистки дистиллята дизельного топлива
- •Установка гидрокрекинга в стационарном слое катализатора
- •Установка гидрокрекинга с псевдоожиженным слоем катализатора
- •Установка гидродоочистки нефтяных масел
- •Установка гидроочистки керосина с применением высокотемпературной сепарации
- •Гидроочистка тяжелых и вакуумных газойлей
- •Глава VI Разделение и переработка газов Установка очистки углеводородных газов от сероводорода раствором этаноламина
- •Установка сернокислотного алкилирования изобутана бутиленами
- •Установка для производства водорода методом паровой каталитической конверсии легких углеводородов
- •Глава VII Деасфальтизация нефтяных остатков
- •Установка одноступенчатой деасфальтизации гудронов жидким пропаном
- •Установка двухступенчатой деасфальтизации гудронов жидким пропаном
- •Установка деасфальтизации бензином (процесс добен)
- •Глава VIII Очистка масляного сырья избирательными растворителями
- •Установка очистки нефтяных масляных фракций фенолом
- •Установка очистки нефтяных масляных фракций фурфуролом
- •Установка очистки нефтяных остатков парными растворителями без предварительной деасфальтизации сырья
- •Глава IX Депарафинизация и обезмасливание нефтяного сырья Низкотемпературные процессы
- •Установка депарафинизации с двухступенчатым фильтрованием
- •Установка депарафинизации и обезмасливания
- •Установка глубокой депарафинизации масляных рафинатов
- •Установка депарафинизации с применением кристаллизатора смешения
- •Отделение регенерации растворителей из растворов депарафинированного масла, гача или петролатума
- •Депарафинизация с использованием карбамида
- •Установка карбамидной депарафинизации инхп ан АзСср и внипИнефти
- •Установка карбамидной депарафинизации ГрозНии и Грозгипронефтехима
- •Глава X Адсорбционные процессы очистки, доочистки и разделения Установка непрерывной адсорбционной очистки масляного сырья
- •Установка контактной доочистки масел отбеливающими землями
- •Установка «Парекс»
- •Глава XI Производство пластичных смазок Общая характеристика технологических стадий и процессов производства смазок
- •Установка периодического производства мыльных и углеводородных смазок
- •Установка периодического производства мыльных смазок с применением контактора
- •Установка полунепрерывного производства мыльных смазок
- •Установка полунепрерывного производства смазок на сухих мылах
- •Установка непрерывного производства мыльных смазок
- •Установка производства смазок на неорганических загустителях
- •Глава XII Производство битума, технического углерода и других продуктов Битумная установка непрерывного действия колонного типа
- •Битумная установка с реактором змеевикового типа
- •Технологическая схема производства технического углерода термическим разложением и гранулирования «мокрым» способом
- •Установка производства серы из технического сероводорода
- •Установка производства серной кислоты из сероводорода
- •Глава XIII Очистка нефтепродуктов растворами щелочи
- •Очистка углеводородных газов
- •Очистка жидких углеводородов
- •Очистка раствором щелочи с применением катализатора
- •Глава XIV Комбинированные установки производства нефтепродуктов
- •Литература
- •Глава I
- •Глава II
- •Глава III
- •Глава IV
- •Глава V
- •Глава VI
- •Глава VII
- •Глава VIII
- •Глава IX
- •Глава X
- •Глава XI
- •Глава XII
- •Глава XIII
- •Глава XIV
- •Приложение Материальные балансы процессов. Качество сырья и продуктов. Гидрогенизационные процессы получения моторных топлив.
- •Процессы гидрообессеривания деасфальтизатов и мазутов.
- •Гидрогенизационные процессы переработки нефтяных остатков.
- •Гидрогенизационные процессы при получении нефтяных масел.
Глава III Термодеструктивные процессы Установки висбрекинга тяжелого сырья
Висбрекинг — процесс однократного термического крекинга тяжелого остаточного сырья, проводимый в мягких условиях. Типичное сырье висбрекинга — мазуты, получаемые при атмосферной перегонке нефтей, или вакуумные гудроны. Восприимчивость гудрона к висбрекингу тем выше, чем ниже температура его размягчения и чем меньше асфальтенов, нерастворимых в м-пентане [I].
Висбрекинг проводится для производства преимущественно жидкого котельного топлива пониженной по сравнению с сырьем вязкости (вариант I), либо с целью производства в повышенных количествах газойля—сырья для установок гидрокрекинга и каталитического крекинга (вариант II). В обоих вариантах побочными легкими продуктами являются газы и бензиновые фракции, выход которых обычно не превышает 3 и 8 % (масс.) на сырье. Проведение процесса в более жестких условиях, что оценивается по выходу бензина, может приводить к нестабильности топлив, получаемых смешением остаточного продукта висбрекинга с другими компонентами тяжелого жидкого котельного топлива. Нестабильное топливо расслаивается, в нем образуется осадок [2].
При проведении висбрекинга по варианту I характерно следующее:
сохранение в составе остаточного продукта (называемого ниже висбрекинг-мазутом) всех жидких фракций, кроме бензиновых;
высокий выход висбрекинг-мазута (90—93 % масс. на сырье);
более низкие по сравнению с сырьем вязкость, температуры начала кипения и застывания висбрекинг-мазута;
простота и гибкость технологической схемы установки, позволяющие перерабатывать остаточное сырье разного качества. В результате висбрекинга гудронов значительно сокращается расход маловязкого дистиллятного разбавителя при приготовлении котельного топлива. Содержание тяжелых бензиновых фракций в остаточном продукте висбрекинга ограничивают, учитывая необходимость получения топлива с достаточно высокой температурой вспышки.
При проведении висбрекинга по варианту II установка дополняется вакуумной секцией, предназначаемой для выделения из висбрекинг-мазута вакуумного газойля. В результате процесса потенциальное содержание вакуумного газойля в сырье повышается на 25—40 % (об.) [3].
На некоторых заводах часть тяжелого остатка, получаемого по варианту II и являющегося нижним продуктом вакуумной колонны, используется как топливо на самих заводах, а избыток после разбавления маловязким продуктом, например каталитическим газойлем, направляется в резервуар товарного мазута нормированной вязкости. Ниже в качестве примера дана характеристика сырья, используемого для висбрекинга, выходы продуктов и их качество, по данным фирмы Lummus [4]:
Показатели |
Остаток атмосферной колонны |
Остаток вакуумной колонны |
Характеристика сырья плотность при 15 оС, кг/м3 температура застывания, оС вязкость кинематическая, мм2/с при 50 оС при 99 оС Выходы продуктов, % (масс.) газ нестабильный бензин (кк 175 оС) остаток > 177 оС Характеристика остатка > 177 оС плотность при 15 оС, кг/м3 температура застывания, оС вязкость кинематическая, мм2/с при 99 оС |
948,4 10
175 22
2,5 7,5 90,0
924,8 4,4 10 |
1024,6 49
1900 -
2,5 7,5 90,0
995,8 40,6 380 |
Установка висбрекинга может входить как секция в состав комбинированной установки, например атмосферная перегонка нефти —>- висбрекинг атмосферного мазута ->- вакуумная перегонка висбрекинг-мазута для выделения газойлевых фракций или висбрекинг атмосферного мазута —> выделение газойлей (в частности, под вакуумом) —> термический крекинг смеси газойлей с целью увеличения выхода керосиновой фракции. Возможны также варианты установок висбрекинга: на одних нагретое сырье по выходе из печи направляется в необогреваемый реактор, где в основном и осуществляется неглубокий термокрекинг; на других — нагретое сырье подвергается висбрекингу в обогреваемом змеевике (сокинг-секция), расположенном во второй топочной камере трубчатой печи.
Для висбрекинга гудронов условия процесса такие: температура 460—500°С; давление 1,4— 3,5 МПа. Длительность пребывания сырья в зоне реакции определяется с помощью уравнения скорости реакции первого порядка [5]. По данным [I], требуемый объем реакционной зоны, т. е. того участка змеевика, где температура сырья превышает 399 °С, составляет 3,6—4,8 м3 на каждые 1000 м3 перерабатываемого жидкого сырья в сутки.
Процесс висбрекинга протекает с поглощением тепла; теплоты эндотермических реакций неглубокой формы термического крекинга разных образцов сырья на 1 кг бензина с концом кипения 225 °С приведены ниже [6]:
Сырьё |
Плотность сырья при 20 оС, кг/м3 |
Теплота реакции при различном выходе бензина, кДж/кг |
||
5% (масс.) |
10% (масс.) |
15% (масс.) |
||
Мазут бакинской нефти Мазут грозненской нефти Газойль бакинской нефти Дисстилят парафинистый Битум парафинистый |
945 904 853 859 1004 |
1425 1510 1260 1300 587 |
1380 1465 1240 1470 922 |
1340 1425 1270 1470 1006 |
Характеристики сырья и продуктов висбрекинга, а также выходы продуктов приведены ниже [3, 7]:
Показатели |
Мазут лёгкой аравийской нефти |
Гудрон лёгкой аравийской нефти |
Полугудрон ставропольской нефти |
Выходы продуктов, % (масс.) сероводород газы С4 фракция С5 и С6 фракция С7-185 оС фракция 185-371 оС остаток (>371 оС) остаток (>185 оС) |
0,2 2,1 1,4 4,7 10,7 80,9 - |
0,3 2,2 1,3 4,6 - - 91,6 |
- 0,8 5,6 - - - 92,6 |
Итого |
100,0 |
100,0 |
99,0 |
Характеристика сырья Плотность при 20 оС, кг/м3 Вязкость кинематическая при 50 оС, мм2/с Температура застывания, оС Коксуемость по Кондраксону, % (масс.) Содержание, % (масс.) серы азота Характеристика остаточного продукта Начало кипения, оС Плотность при 20 оС, кг/м3 Вязкость кинематическая при 50 оС, мм2/с Температура застывания, оС Содержание серы, % (масс.) |
954 480 15 7,6
3,0 0,16
371 968 300 - 3,2 |
1022 - 41 20,8
4,0 0,31
185 1020 6000 29 4,0 |
918 33,3 49 4,3
0,32 -
180 896 16,8 40 0,20 |
* Конец кипения 180 оС ** Начало кипения 180 оС *** При 80 оС |
|||
Октановое число бензиновой фракции висбрекинга находится в пределах от 58 до 68 (моторный метод, без присадки). Содержание серы в бензиновых и керосиновых фракциях существенно ниже, чем в сырье; однако эти фракции обычно нуждаются в очистке. Например, подвергая висбрекингу мазут [мол. масса 407, плотность 938,5 кг/м3; содержание серы 1,81 % (масс.), коксуемость 5,0 % ], самотлорской нефти, получали бензин и керосин, содержащие до очистки 0,7 и 1,0 % (масс.) серы [8].
Висбрекинг-установка с реакционной камерой (рис. III-l) [9]. Горячий мазут, поступающий с нефтеперегонной установки, подается насосом 1 в змеевик печи 2. По выходе из печи сырье подвергается висбрекингу в реакционной камере 3 (реакторе), работающей при давлении около 1,7 МПа. Полученная смесь продуктов, пройдя редукционный клапан 4, направляется далее в фракционирующую колонну 8. До входа в колонну смесь охлаждается за счет подачи в линию холодного газойля, нагнетаемого насосом 7, через теплообменник 6. Остальная часть охлажденного газойля (рециркулят) возвращается этим же насосом в среднюю зону колонны 8. Балансовое количество газойля отводится с установки через холодильник 5.
Для конденсации бензиновых паров и охлаждения газов, выходящих из колонны 8 сверху, служит аппарат воздушного охлаждения 11. После него смесь проходит водяной холодильник 12. В горизонтальном сепараторе 13 (он же сборник орошения) жирные газы отделяются от нестабильного бензина. Часть бензина подается насосом 14 на верхнюю тарелку колонны в качестве орошения; остальное количество отводится с установки.
Легкая керосиновая фракция отбирается из колонны с промежуточной тарелки и насосом 10 выводится с установки. На некоторых установках эта фракция предварительно продувается водяным паром в выносной отпарной колонне.
Описанная установка является частью комбинированной установки, и с низа колонны 8 остаток — утяжеленный висбрекинг-мазут — направляется насосом 9 в вакуумную ступень.
Висбрекинг-установка с сокинг-секцией. Такая установка отличается от рассмотренной выше главным образом тем, что процесс висбрекинга в ней осуществляется в обогреваемом змеевике внутри печи. Поэтому ниже рассматривается только нагревательно-реакторная печь (рис. II 1-2), по конструкции подобная описанной в работе [10].
В левой топочной камере вдоль боковых стен и у потолка расположены нагревательные радиантные трубы, а в правой топочной камере — радиантные трубы сокинг-секции, с регулируемым, но самостоятельным подводом тепла в эту секцию. Уходящие из топочных камер / и /// дымовые газы поступают через проемы внизу внутренних стен в конвекционную камеру //. Здесь восходящий поток дымовых газов охлаждается, отдавая тепло на нагрев сырья (при наличии для него конвекционного змеевика), испарение воды и перегрев водяного пара при размещении в камере трубчатых элементов парового котла-утилизатора или пароперегревателя.
Длительность пребывания сырья в сокинг-секции зависит от его расхода (подачи в змеевик печи), давления на участке паро- и газообразования, а также от расхода водяного пара, вводимого в радиантные трубы. Для подавления реакций смесь, выходящая из сокинг-секции, охлаждается путем ввода в нее рециркулирующей жидкости.
Печь оснащена контрольно-измерительными приборами и регуляторами, такими, как: указатели температуры (УТ) стенок радиантных труб; регулятор температуры (РТ) сырья при выходе его из нагревательного змеевика; регулятор температуры продуктов висбрекинга при выходе их из сокинг-секции; регулятор давления (РД) на выводной линии.
С увеличением глубины крекинга сырья и при перегреве труб усиливается отложение кокса на внутренней поверхности змеевика сокинг-секции, что сокращает длительность рабочего пробега печи. Рекомендуемые значения тепловых напряженностей радиантных поверхностей нагрева (подсчет по наружному диаметру труб) в печах висбрекинг-установок следующие: нагревательная секция 102—113 МДж/мч), сокинг-секция 68—80 МДж/м ч). Эти значения приемлемы при одностороннем факельном облучении труб, располагаемых у потолка и стен с шагом, равным двум диаметрам [II].
