
- •Оглавление
- •Предисловие
- •Введение
- •1. Модели и их свойства
- •Основные понятия и определения
- •Вопросы к разделу 1.1
- •Целенаправленность моделей
- •Вопросы к разделу 1.2
- •Свойства моделей
- •Вопросы к разделу 1.3
- •Способы реализации моделей
- •1.4.1. Материальные модели
- •1.4.2. Виды подобия
- •1.4.3. Идеальные модели
- •Вопросы к разделу 1.4
- •1.5. Виды моделей
- •1.5.1. Познавательные и прагматические модели
- •1.5.2. Детерминированные и вероятностные модели
- •1.5.3. Непрерывные и дискретные модели
- •1.5.4. Статические и динамические модели
- •1.5.5. Линейные и нелинейные модели
- •1.5.6. Стационарные и нестационарные модели
- •1.5.7. Сосредоточенные и распределенные модели
- •1.5.8. Классификация видов моделей
- •Вопросы к разделу 1.5
- •Кибернетические модели систем
- •1.6.1. Модель типа «черный ящик»
- •1.6.2. Модель состава системы
- •1.6.3. Модель структуры системы
- •1.6.4. Графы
- •1.6.5. Структурная схема системы
- •1.6.6. Итоги анализа моделей систем.
- •Вопросы к разделу 1.6
- •2. Аналитические математические модели систем
- •2.1. Общая математическая модель динамической системы
- •Вопросы к разделу 2.1
- •2.2. Частные математические модели динамических систем
- •2.2.1. Модели детерминированных линейных непрерывных систем
- •Модели дискретных систем. Конечные автоматы
- •Вопросы к разделу 2.2
- •2.3. Свойства динамических систем
- •2.4. Линейная непрерывная детерминированная модель многомерной динамической системы в переменных состояния
- •Вопросы к разделу 2.4
- •2.5.7. Определитель Грама
- •Вопросы к разделу 2.5
- •Линейное векторное пространство
- •2.6.1. Характеристические числа и характеристические векторы
- •2.6.2. Формула Бохера
- •2.6.3. Модальная матрица
- •2.6.4. Диагонализация квадратной матрицы
- •Вопросы к разделу 2.6
- •Управляемость и наблюдаемость
- •Вопросы к разделу 2.7
- •Компьютерное моделирование. Численное интегрирование дифференциальных уравнений
- •3.1. Ошибки усечения и округления
- •3.2. Метод Эйлера
- •3.3. Методы Рунге–Кутта
- •Сравнение различных методов решения. Контроль величины шага и устойчивость
- •Вопросы к главе 3
- •4. Динамика развития и использования моделей
- •4.1. Сложности алгоритмизации моделирования
- •Вопросы к главе 4
- •5. Аналитические вероятностные математические модели систем
- •5.1. Аналитические модели систем массового обслуживания
- •5.1.1. Важнейшие выходные параметры смо
- •5.1.2. Простейшие модели смо
- •5.1.3. Общая характеристика моделей смо
- •5.1.4. Дисциплины обслуживания
- •5.1.5. Характеристики входного потока заявок
- •5.1.6. Функция распределения Пуассона
- •5.1.7. Характеристики обслуживания
- •5.1.8. Показательный закон распределения времени обслуживания
- •5.1.9. Показатели качества обслуживания
- •5.1.10. Согласование источника заявок с каналом обслуживания
- •5.1.11. Оценка эффективности многоканальной смо
- •Вопросы к разделу 5.1
- •5.2. Сети Петри
- •5.2.1. Маркировка
- •5.2.2. Правила срабатывания переходов
- •5.2.3. Разновидности сетей Петри
- •5.2.4. Конфликтные ситуации в сетях Петри
- •5.2.5. Пример сети Петри для работы группы пользователей на одной рабочей станции
- •5.2.6. Пример сети Петри для системы обнаружения и устранения неисправностей в технической системе
- •5.2.7. Анализ сетей Петри
- •Вопросы к разделу 5.2
- •6. Имитационные модели систем
- •6.1. Имитационный эксперимент
- •Недостатки имитационного моделирования
- •6.2. Развитие имитационного моделирования
- •Основные фазы развития средств им
- •6.3. Этапы имитационного моделирования
- •6.4. Подходы к построению имитационных моделей
- •6.4.1. Событийный подход
- •6.4.2. Подход сканирования активностей
- •6.4.3. Процессно-ориентированный подход
- •6.5. Разработка программ им
- •6.5.1. Использование для им универсальных языков программирования
- •6.5.2. Использование для им специализированных языков моделирования
- •6.5.3. Создание и использование проблемно-ориентированных систем моделирования
- •6.6. Имитационное моделирование систем массового обслуживания
- •6.6.1. Событийный метод моделирования
- •6.6.2. Схема реализации событийного метода имитационного моделирования
- •Вопросы к главе 6
- •7. Метод «ресурсы–действия–операции» (рдо)
- •7.1. Основные положения метода рдо
- •7.1.1. Ресурсы сложной дискретной системы
- •7.1.2. Действия в сдс
- •7.1.3. Операции в сдс
- •7.1.4. Основные положения рдо-метода
- •7.2. Представление сдс в рдо-методе
- •7.3. Базовая структура инструментальной среды интеллектуальной системы
- •7.4. Продукционный имитатор
- •7.5. Моделирование в среде рдо
- •7.5.1. Основные понятия
- •7.5.2. Объекты исходных данных и объекты, создаваемые рдо-имитатором при выполнении прогона
- •7.5.3. Состав объектов модели
- •7.5.4. Назначение объектов модели
- •7.6. Интегрированная среда моделирования рдо
- •7.6.1. Состав функций исм
- •7.6.2. Главное окно исм рдо
- •7.6.3. Инструментальная панель
- •7.6.4. Работа с рдо-имитатором
- •Описание кадра анимации
- •Пример описания кадра анимации
- •Вопросы к главе 7
- •8. Краткое описание языка gpss
- •8.1. Оператор generate
- •8.2. Оператор function
- •8.3. Операторы split и assemble
- •8.4. Операторы seize и release
- •8.5. Оператор advance
- •8.6. Операторы enter и leave
- •8.7. Операторы queue и depart
- •8.8. Оператор test
- •8.9. Операторы start и terminate
- •8.10. Оператор transfer
- •8.11. Оператор assigne
- •8.12. Операторы управления движением заявок
- •8.13. Вычислительный оператор variable
- •8.14. Оператор синхронизации матсн
- •8.15. Пример программы на языке gpss для смо
- •Программа к примеру смо
- •Вопросы к главе 8
- •9. Планирование компьютерных экспериментов с моделями систем
- •9.1. Основные понятия теории планирования экспериментов
- •9.2. Модели планирования эксперимента
- •9.3. Виды планов экспериментов
- •Вопросы к главе 9
- •10. Обработка и анализ результатов компьютерного моделирования
- •10.1. Методы оценки
- •10.2. Статистические методы обработки
- •10.3. Задачи обработки результатов моделирования
- •10.3.1. Критерий согласия Колмогорова
- •10.3.2. Критерий согласия Пирсона
- •10.3.3. Критерий согласия Смирнова
- •10.3.4. Критерий согласия Стьюдента
- •10.3.5. Критерий согласия Фишера
- •10.4. Анализ и интерпретация результатов компьютерного моделирования
- •10.4.1. Корреляционный анализ результатов моделирования
- •10.4.2. Регрессионный анализ результатов моделирования
- •10.4.3. Дисперсионный анализ результатов моделирования
- •Вопросы к главе 10
- •Заключение
- •Список литературы
- •Приложение 1 Некоторые сведения из теории матриц
- •Основные типы матриц
- •Специальные типы матриц
- •Операции над матрицами Сложение матриц
- •Умножение матриц
- •Дифференцирование матриц
- •Интегрирование матриц
- •Определители
- •Свойства определителей
- •Нуль-граф и полный граф
- •Изоморфные графы
- •Плоские графы
- •Число ребер графа
- •Формула Эйлера для числа вершин, ребер и граней плоского графа
- •Распределение Лапласа
- •Вырожденное (причинное) распределение
- •Приложение 4 Краткие сведения о специализированных языках и проблемно-ориентированных системах имитационного моделирования
- •Предметный указатель
- •Список сокращений
Приложение 1 Некоторые сведения из теории матриц
Матрицы необходимы при использовании модели динамики системы в виде переменных состояния, для исследования многомерных систем. Матрица представляет таблицу из m строк и n столбцов:
Говорят, что в этом случае размерность (англ. dimention) матрицы равна (m×n). Это можно записать следующим образом:
Основные типы матриц
1. Матрица-столбец (m×1):
2. Матрица-строка (1×n):
3. Диагональная матрица. Главная диагональ квадратной матрицы состоит из элементов aii. Диагональной матрицей называется квадратная матрица, элементы которой, не лежащие на главной диагонали, равны нулю:
.
4. Единичная матрица. Единичной матрицей называется диагональная матрица, диагональные элементы которой равны единице:
5. Нулевая матрица. Матрица, все элементы которой тождественно
равны нулю, называется нулевой матрицей:
6. Транспонированная матрица. Это матрица AT размерности (n×m),в
которой строки и столбцы меняются местами по отношению к исходной матрице А размерности (m×n), т.е. если A = [aij], то AT = [aji]:
|
|
Специальные типы матриц
1. Симметрическая матрица. Квадратная матрица (m = n) с действительными элементами называется симметрической, если она равна своей транспонированной, т.е. если
, или
aij
= aji
(i,j=1,2,…,
n).
2. Кососимметрическая матрица. Действительная квадратная матрица называется кососимметрической, если
,
или
aij
=
–
aji
(i,j=1,2,…,
n).
Элементы, находящиеся на главной диагонали кососимметрической матрицы, равны нулю, т.е. aij =0 (i=1,…, n).
3.
Комплексно-сопряженная матрица.
Если элементы матрицы A
комплексные (т.е. aik
= αji+jβik,
где
),
то комплексно
сопряженная
матрица B
содержит элементы bik
= αji
– jβik.
Это записывается в форме:
B=A*.
4. Сопряженная матрица. Матрица В, сопряженная по отношению к А является транспонированной и комплексно сопряженной по отношению к А, т.е. равна:
5. Действительная матрица. Матрица А называется действительной, если она равна своей комплексно сопряженной матрице:
A = A*.
6. Мнимая матрица. Матрица А называется мнимой, если она равна своей комплексно сопряженной матрице, взятой со знаком минус:
A = – (A*).
7. Эрмитова матрица. Матрица А называется эрмитовой, если она равна своей сопряженной матрице:
A = (A*)T.
8. Косоэрмитова матрица. Матрица А называется косоэрмитовой, если она равна своей сопряженной матрице, взятой со знаком минус:
A = – (A*)T.
Операции над матрицами Сложение матриц
Складывать можно только матрицы одинаковой размерности. При сложении матриц одноименные элементы слагаемых матриц складываются.
Пример 1. Вычислить сумму указанных матриц.
Свойства сложения матриц. Сложение матриц коммутативно и ассоциативно.
1. Коммутативность:
A+B=B+A
2. Ассоциативность:
A+(B+C)=(A+B)+C.
Вычитание матриц осуществляется аналогично сложению, но с учетом знака «минус».
Пример 2. Вычислить разность указанных матриц.