- •Оглавление
- •Предисловие
- •Введение
- •1. Модели и их свойства
- •Основные понятия и определения
- •Вопросы к разделу 1.1
- •Целенаправленность моделей
- •Вопросы к разделу 1.2
- •Свойства моделей
- •Вопросы к разделу 1.3
- •Способы реализации моделей
- •1.4.1. Материальные модели
- •1.4.2. Виды подобия
- •1.4.3. Идеальные модели
- •Вопросы к разделу 1.4
- •1.5. Виды моделей
- •1.5.1. Познавательные и прагматические модели
- •1.5.2. Детерминированные и вероятностные модели
- •1.5.3. Непрерывные и дискретные модели
- •1.5.4. Статические и динамические модели
- •1.5.5. Линейные и нелинейные модели
- •1.5.6. Стационарные и нестационарные модели
- •1.5.7. Сосредоточенные и распределенные модели
- •1.5.8. Классификация видов моделей
- •Вопросы к разделу 1.5
- •Кибернетические модели систем
- •1.6.1. Модель типа «черный ящик»
- •1.6.2. Модель состава системы
- •1.6.3. Модель структуры системы
- •1.6.4. Графы
- •1.6.5. Структурная схема системы
- •1.6.6. Итоги анализа моделей систем.
- •Вопросы к разделу 1.6
- •2. Аналитические математические модели систем
- •2.1. Общая математическая модель динамической системы
- •Вопросы к разделу 2.1
- •2.2. Частные математические модели динамических систем
- •2.2.1. Модели детерминированных линейных непрерывных систем
- •Модели дискретных систем. Конечные автоматы
- •Вопросы к разделу 2.2
- •2.3. Свойства динамических систем
- •2.4. Линейная непрерывная детерминированная модель многомерной динамической системы в переменных состояния
- •Вопросы к разделу 2.4
- •2.5.7. Определитель Грама
- •Вопросы к разделу 2.5
- •Линейное векторное пространство
- •2.6.1. Характеристические числа и характеристические векторы
- •2.6.2. Формула Бохера
- •2.6.3. Модальная матрица
- •2.6.4. Диагонализация квадратной матрицы
- •Вопросы к разделу 2.6
- •Управляемость и наблюдаемость
- •Вопросы к разделу 2.7
- •Компьютерное моделирование. Численное интегрирование дифференциальных уравнений
- •3.1. Ошибки усечения и округления
- •3.2. Метод Эйлера
- •3.3. Методы Рунге–Кутта
- •Сравнение различных методов решения. Контроль величины шага и устойчивость
- •Вопросы к главе 3
- •4. Динамика развития и использования моделей
- •4.1. Сложности алгоритмизации моделирования
- •Вопросы к главе 4
- •5. Аналитические вероятностные математические модели систем
- •5.1. Аналитические модели систем массового обслуживания
- •5.1.1. Важнейшие выходные параметры смо
- •5.1.2. Простейшие модели смо
- •5.1.3. Общая характеристика моделей смо
- •5.1.4. Дисциплины обслуживания
- •5.1.5. Характеристики входного потока заявок
- •5.1.6. Функция распределения Пуассона
- •5.1.7. Характеристики обслуживания
- •5.1.8. Показательный закон распределения времени обслуживания
- •5.1.9. Показатели качества обслуживания
- •5.1.10. Согласование источника заявок с каналом обслуживания
- •5.1.11. Оценка эффективности многоканальной смо
- •Вопросы к разделу 5.1
- •5.2. Сети Петри
- •5.2.1. Маркировка
- •5.2.2. Правила срабатывания переходов
- •5.2.3. Разновидности сетей Петри
- •5.2.4. Конфликтные ситуации в сетях Петри
- •5.2.5. Пример сети Петри для работы группы пользователей на одной рабочей станции
- •5.2.6. Пример сети Петри для системы обнаружения и устранения неисправностей в технической системе
- •5.2.7. Анализ сетей Петри
- •Вопросы к разделу 5.2
- •6. Имитационные модели систем
- •6.1. Имитационный эксперимент
- •Недостатки имитационного моделирования
- •6.2. Развитие имитационного моделирования
- •Основные фазы развития средств им
- •6.3. Этапы имитационного моделирования
- •6.4. Подходы к построению имитационных моделей
- •6.4.1. Событийный подход
- •6.4.2. Подход сканирования активностей
- •6.4.3. Процессно-ориентированный подход
- •6.5. Разработка программ им
- •6.5.1. Использование для им универсальных языков программирования
- •6.5.2. Использование для им специализированных языков моделирования
- •6.5.3. Создание и использование проблемно-ориентированных систем моделирования
- •6.6. Имитационное моделирование систем массового обслуживания
- •6.6.1. Событийный метод моделирования
- •6.6.2. Схема реализации событийного метода имитационного моделирования
- •Вопросы к главе 6
- •7. Метод «ресурсы–действия–операции» (рдо)
- •7.1. Основные положения метода рдо
- •7.1.1. Ресурсы сложной дискретной системы
- •7.1.2. Действия в сдс
- •7.1.3. Операции в сдс
- •7.1.4. Основные положения рдо-метода
- •7.2. Представление сдс в рдо-методе
- •7.3. Базовая структура инструментальной среды интеллектуальной системы
- •7.4. Продукционный имитатор
- •7.5. Моделирование в среде рдо
- •7.5.1. Основные понятия
- •7.5.2. Объекты исходных данных и объекты, создаваемые рдо-имитатором при выполнении прогона
- •7.5.3. Состав объектов модели
- •7.5.4. Назначение объектов модели
- •7.6. Интегрированная среда моделирования рдо
- •7.6.1. Состав функций исм
- •7.6.2. Главное окно исм рдо
- •7.6.3. Инструментальная панель
- •7.6.4. Работа с рдо-имитатором
- •Описание кадра анимации
- •Пример описания кадра анимации
- •Вопросы к главе 7
- •8. Краткое описание языка gpss
- •8.1. Оператор generate
- •8.2. Оператор function
- •8.3. Операторы split и assemble
- •8.4. Операторы seize и release
- •8.5. Оператор advance
- •8.6. Операторы enter и leave
- •8.7. Операторы queue и depart
- •8.8. Оператор test
- •8.9. Операторы start и terminate
- •8.10. Оператор transfer
- •8.11. Оператор assigne
- •8.12. Операторы управления движением заявок
- •8.13. Вычислительный оператор variable
- •8.14. Оператор синхронизации матсн
- •8.15. Пример программы на языке gpss для смо
- •Программа к примеру смо
- •Вопросы к главе 8
- •9. Планирование компьютерных экспериментов с моделями систем
- •9.1. Основные понятия теории планирования экспериментов
- •9.2. Модели планирования эксперимента
- •9.3. Виды планов экспериментов
- •Вопросы к главе 9
- •10. Обработка и анализ результатов компьютерного моделирования
- •10.1. Методы оценки
- •10.2. Статистические методы обработки
- •10.3. Задачи обработки результатов моделирования
- •10.3.1. Критерий согласия Колмогорова
- •10.3.2. Критерий согласия Пирсона
- •10.3.3. Критерий согласия Смирнова
- •10.3.4. Критерий согласия Стьюдента
- •10.3.5. Критерий согласия Фишера
- •10.4. Анализ и интерпретация результатов компьютерного моделирования
- •10.4.1. Корреляционный анализ результатов моделирования
- •10.4.2. Регрессионный анализ результатов моделирования
- •10.4.3. Дисперсионный анализ результатов моделирования
- •Вопросы к главе 10
- •Заключение
- •Список литературы
- •Приложение 1 Некоторые сведения из теории матриц
- •Основные типы матриц
- •Специальные типы матриц
- •Операции над матрицами Сложение матриц
- •Умножение матриц
- •Дифференцирование матриц
- •Интегрирование матриц
- •Определители
- •Свойства определителей
- •Нуль-граф и полный граф
- •Изоморфные графы
- •Плоские графы
- •Число ребер графа
- •Формула Эйлера для числа вершин, ребер и граней плоского графа
- •Распределение Лапласа
- •Вырожденное (причинное) распределение
- •Приложение 4 Краткие сведения о специализированных языках и проблемно-ориентированных системах имитационного моделирования
- •Предметный указатель
- •Список сокращений
Вопросы к разделу 5.1
Что такое Q-схемы?
Почему модели систем массового обслуживания относят к аналитическим?
Почему на практике сложные модели СМО стараются не использовать?
Что служит альтернативой использования моделей массового обслуживания?
Для чего используются дисциплины обслуживания?
Какой поток заявок называется простейшим?
Какие распределения вероятностей традиционно используются для описания простейшего потока заявок?
Почему функции многомерного распределения вероятностей Пуассона имеют экстремумы?
Какие распределения вероятностей чаще всего используются для описания времени обслуживания?
Какие существуют способы согласования источника заявок с обслуживающими аппаратами?
Какими показателями характеризуется качество обслуживания?
Какие выводы можно сделать в зависимости от величины коэффициента загрузки обслуживающего аппарата?
Какие критерии эффективности СМО позволяет оценить формула Эрланга?
5.2. Сети Петри
Это аппарат для моделирования динамических дискретных систем (преимущественно асинхронных параллельных процессов). Сеть Петри определяется как четверка <Р,Т,I,О>, где Р и Т – конечные множества позиций и переходов, I и О – множества входных (Input) и выходных (Output) функций.
Иначе говоря, сеть Петри представляет собой двудольный ориентированный граф, в котором позициям соответствуют вершины, изображаемые кружками, а переходам – вершины, изображаемые утолщенными черточками.
Функциям I соответствуют дуги, направленные от позиций к переходам, а функциям О – от переходов к позициям.
Как и в системах массового обслуживания, в сетях Петри вводятся объекты двух типов: динамические – изображаются метками (маркерами) внутри позиций и статические – им соответствуют вершины сети Петри.
Модели в виде сетей Петри также называют N-схемами (от англ. net – сеть).
Рис. 5.12. Фрагмент сети Петри и основные понятия
5.2.1. Маркировка
Распределение маркеров по позициям называют маркировкой. Маркеры могут перемещаться в сети. Каждое изменение маркировки называют событием, причем каждое событие связано с определенным переходом. Считается, что события происходят мгновенно и разновременно при выполнении некоторых условий.
Каждому условию в сети Петри соответствует определенная позиция. Совершению события соответствует срабатывание (возбуждение или запуск) перехода, при котором маркеры из входных позиций этого перехода перемещаются в выходные позиции. Последовательность событий образует моделируемый процесс.
5.2.2. Правила срабатывания переходов
Правила срабатывания переходов (рис. 5.12) конкретизируют следующим образом:
переход срабатывает, если для каждой из его входных позиций выполняется условие Ni ³ Кi, где Ni – число маркеров в i-й входной позиции, Кi – число дуг, идущих от i-й позиции к переходу; при срабатывании перехода число маркеров в i-й входной позиции уменьшается на Кi, а в j-й выходной позиции увеличивается на Мj, где Мj – число дуг, связывающих переход с j-й позицией.
Рис. 5.13. Фрагмент сети Петри перед срабатыванием перехода
На рис. 5.13 показан пример распределения маркеров по позициям перед срабатыванием, эту маркировку записывают в виде (2, 2, 3, 1).
После срабатывания перехода (рис. 5.14) маркировка становится иной:
(1, 0, 1, 4).
Рис. 5.14. Фрагмент сети Петри после срабатывания перехода
