
- •Оглавление
- •Предисловие
- •Введение
- •1. Модели и их свойства
- •Основные понятия и определения
- •Вопросы к разделу 1.1
- •Целенаправленность моделей
- •Вопросы к разделу 1.2
- •Свойства моделей
- •Вопросы к разделу 1.3
- •Способы реализации моделей
- •1.4.1. Материальные модели
- •1.4.2. Виды подобия
- •1.4.3. Идеальные модели
- •Вопросы к разделу 1.4
- •1.5. Виды моделей
- •1.5.1. Познавательные и прагматические модели
- •1.5.2. Детерминированные и вероятностные модели
- •1.5.3. Непрерывные и дискретные модели
- •1.5.4. Статические и динамические модели
- •1.5.5. Линейные и нелинейные модели
- •1.5.6. Стационарные и нестационарные модели
- •1.5.7. Сосредоточенные и распределенные модели
- •1.5.8. Классификация видов моделей
- •Вопросы к разделу 1.5
- •Кибернетические модели систем
- •1.6.1. Модель типа «черный ящик»
- •1.6.2. Модель состава системы
- •1.6.3. Модель структуры системы
- •1.6.4. Графы
- •1.6.5. Структурная схема системы
- •1.6.6. Итоги анализа моделей систем.
- •Вопросы к разделу 1.6
- •2. Аналитические математические модели систем
- •2.1. Общая математическая модель динамической системы
- •Вопросы к разделу 2.1
- •2.2. Частные математические модели динамических систем
- •2.2.1. Модели детерминированных линейных непрерывных систем
- •Модели дискретных систем. Конечные автоматы
- •Вопросы к разделу 2.2
- •2.3. Свойства динамических систем
- •2.4. Линейная непрерывная детерминированная модель многомерной динамической системы в переменных состояния
- •Вопросы к разделу 2.4
- •2.5.7. Определитель Грама
- •Вопросы к разделу 2.5
- •Линейное векторное пространство
- •2.6.1. Характеристические числа и характеристические векторы
- •2.6.2. Формула Бохера
- •2.6.3. Модальная матрица
- •2.6.4. Диагонализация квадратной матрицы
- •Вопросы к разделу 2.6
- •Управляемость и наблюдаемость
- •Вопросы к разделу 2.7
- •Компьютерное моделирование. Численное интегрирование дифференциальных уравнений
- •3.1. Ошибки усечения и округления
- •3.2. Метод Эйлера
- •3.3. Методы Рунге–Кутта
- •Сравнение различных методов решения. Контроль величины шага и устойчивость
- •Вопросы к главе 3
- •4. Динамика развития и использования моделей
- •4.1. Сложности алгоритмизации моделирования
- •Вопросы к главе 4
- •5. Аналитические вероятностные математические модели систем
- •5.1. Аналитические модели систем массового обслуживания
- •5.1.1. Важнейшие выходные параметры смо
- •5.1.2. Простейшие модели смо
- •5.1.3. Общая характеристика моделей смо
- •5.1.4. Дисциплины обслуживания
- •5.1.5. Характеристики входного потока заявок
- •5.1.6. Функция распределения Пуассона
- •5.1.7. Характеристики обслуживания
- •5.1.8. Показательный закон распределения времени обслуживания
- •5.1.9. Показатели качества обслуживания
- •5.1.10. Согласование источника заявок с каналом обслуживания
- •5.1.11. Оценка эффективности многоканальной смо
- •Вопросы к разделу 5.1
- •5.2. Сети Петри
- •5.2.1. Маркировка
- •5.2.2. Правила срабатывания переходов
- •5.2.3. Разновидности сетей Петри
- •5.2.4. Конфликтные ситуации в сетях Петри
- •5.2.5. Пример сети Петри для работы группы пользователей на одной рабочей станции
- •5.2.6. Пример сети Петри для системы обнаружения и устранения неисправностей в технической системе
- •5.2.7. Анализ сетей Петри
- •Вопросы к разделу 5.2
- •6. Имитационные модели систем
- •6.1. Имитационный эксперимент
- •Недостатки имитационного моделирования
- •6.2. Развитие имитационного моделирования
- •Основные фазы развития средств им
- •6.3. Этапы имитационного моделирования
- •6.4. Подходы к построению имитационных моделей
- •6.4.1. Событийный подход
- •6.4.2. Подход сканирования активностей
- •6.4.3. Процессно-ориентированный подход
- •6.5. Разработка программ им
- •6.5.1. Использование для им универсальных языков программирования
- •6.5.2. Использование для им специализированных языков моделирования
- •6.5.3. Создание и использование проблемно-ориентированных систем моделирования
- •6.6. Имитационное моделирование систем массового обслуживания
- •6.6.1. Событийный метод моделирования
- •6.6.2. Схема реализации событийного метода имитационного моделирования
- •Вопросы к главе 6
- •7. Метод «ресурсы–действия–операции» (рдо)
- •7.1. Основные положения метода рдо
- •7.1.1. Ресурсы сложной дискретной системы
- •7.1.2. Действия в сдс
- •7.1.3. Операции в сдс
- •7.1.4. Основные положения рдо-метода
- •7.2. Представление сдс в рдо-методе
- •7.3. Базовая структура инструментальной среды интеллектуальной системы
- •7.4. Продукционный имитатор
- •7.5. Моделирование в среде рдо
- •7.5.1. Основные понятия
- •7.5.2. Объекты исходных данных и объекты, создаваемые рдо-имитатором при выполнении прогона
- •7.5.3. Состав объектов модели
- •7.5.4. Назначение объектов модели
- •7.6. Интегрированная среда моделирования рдо
- •7.6.1. Состав функций исм
- •7.6.2. Главное окно исм рдо
- •7.6.3. Инструментальная панель
- •7.6.4. Работа с рдо-имитатором
- •Описание кадра анимации
- •Пример описания кадра анимации
- •Вопросы к главе 7
- •8. Краткое описание языка gpss
- •8.1. Оператор generate
- •8.2. Оператор function
- •8.3. Операторы split и assemble
- •8.4. Операторы seize и release
- •8.5. Оператор advance
- •8.6. Операторы enter и leave
- •8.7. Операторы queue и depart
- •8.8. Оператор test
- •8.9. Операторы start и terminate
- •8.10. Оператор transfer
- •8.11. Оператор assigne
- •8.12. Операторы управления движением заявок
- •8.13. Вычислительный оператор variable
- •8.14. Оператор синхронизации матсн
- •8.15. Пример программы на языке gpss для смо
- •Программа к примеру смо
- •Вопросы к главе 8
- •9. Планирование компьютерных экспериментов с моделями систем
- •9.1. Основные понятия теории планирования экспериментов
- •9.2. Модели планирования эксперимента
- •9.3. Виды планов экспериментов
- •Вопросы к главе 9
- •10. Обработка и анализ результатов компьютерного моделирования
- •10.1. Методы оценки
- •10.2. Статистические методы обработки
- •10.3. Задачи обработки результатов моделирования
- •10.3.1. Критерий согласия Колмогорова
- •10.3.2. Критерий согласия Пирсона
- •10.3.3. Критерий согласия Смирнова
- •10.3.4. Критерий согласия Стьюдента
- •10.3.5. Критерий согласия Фишера
- •10.4. Анализ и интерпретация результатов компьютерного моделирования
- •10.4.1. Корреляционный анализ результатов моделирования
- •10.4.2. Регрессионный анализ результатов моделирования
- •10.4.3. Дисперсионный анализ результатов моделирования
- •Вопросы к главе 10
- •Заключение
- •Список литературы
- •Приложение 1 Некоторые сведения из теории матриц
- •Основные типы матриц
- •Специальные типы матриц
- •Операции над матрицами Сложение матриц
- •Умножение матриц
- •Дифференцирование матриц
- •Интегрирование матриц
- •Определители
- •Свойства определителей
- •Нуль-граф и полный граф
- •Изоморфные графы
- •Плоские графы
- •Число ребер графа
- •Формула Эйлера для числа вершин, ребер и граней плоского графа
- •Распределение Лапласа
- •Вырожденное (причинное) распределение
- •Приложение 4 Краткие сведения о специализированных языках и проблемно-ориентированных системах имитационного моделирования
- •Предметный указатель
- •Список сокращений
5. Аналитические вероятностные математические модели систем
Среди аналитических вероятностных математических моделей систем одним из наиболее востребованных классов является класс непрерывно-стохастических моделей, который также называют Q-схемами (от англ. queue – очередь). Эти модели характерны для теории массового обслуживания, рассматривающей абстрактные процессы обслуживания неких заявок, которые помимо всего прочего могут образовывать очереди.
5.1. Аналитические модели систем массового обслуживания
Аналитическое исследование систем массового обслуживания (СМО) является подходом, альтернативным имитационному моделированию, и состоит в получении формул для расчета выходных параметров СМО с последующей подстановкой значений аргументов в эти формулы в каждом отдельном эксперименте.
В моделях СМО рассматривают следующие объекты:
1) заявки на обслуживание (транзакты);
2) обслуживающие аппараты (ОА), или приборы.
Практическая задача теории массового обслуживания связана с исследованием операций этими объектами и состоит из отдельных элементов, на которые влияют случайные факторы.
В качестве примера задач, рассматриваемых в теории массового обслуживания, можно привести: согласование пропускной способности источника сообщения с каналом передачи данных, анализ оптимального потока городского транспорта, расчет емкости зала ожидания для пассажиров в аэропорту и пр.
Заявка может находиться либо в состоянии обслуживания, либо в состоянии ожидания обслуживания.
Обслуживающий прибор может быть либо занят обслуживанием, либо свободен.
Состояние СМО характеризуется совокупностью состояний обслуживающих приборов и заявок. Смена состояний в СМО называется – событие.
Модели СМО используются для исследования процессов происходящие в системе, при подаче на входы потоков заявок. Эти процессы представляют собой последовательность событий.
5.1.1. Важнейшие выходные параметры смо
Производительность
Пропускная способность
Вероятность отказа в обслуживании
Среднее время обслуживания;
Коэффициент загрузки оборудования (ОА).
Заявками могут быть заказы на производство изделий, задачи, решаемые в вычислительной системе, клиенты в банках, грузы, поступающие на транспортировку и др. Очевидно, что параметры заявок, поступающих в систему, являются случайными величинами и при исследовании или проектировании могут быть известны лишь их законы распределения.
В связи с этим анализ функционирования на системном уровне, как правило, носит статистический характер. В качестве математического аппарата моделирования удобно принять теорию массового обслуживания, а в качестве моделей систем на этом уровне использовать системы массового обслуживания.
5.1.2. Простейшие модели смо
В простейшем случае СМО представляет собой некоторое устройство, называемое обслуживающим аппаратом (ОА), с очередями заявок на входах.
М о д е л ь о б с л у ж и в а н и я с о т к а з а м и (рис.5.1)
Рис. 5.1. Модель СМО с отказами:
0 – источник заявок;
1 – обслуживающий прибор;
а – входной поток заявок на обслуживание;
в – выходной поток обслуженных заявок;
с – выходной поток необслуженных заявок.
В этой модели отсутствует накопитель заявок на входе ОА. Если заявка приходит от источника 0 в момент времени, когда ОА занят обслуживанием предыдущей заявки, то вновь пришедшая заявка выходит из системы (так как ей отказано в обслуживании) и теряется (поток с).
М о д е л ь о б с л у ж и в а н и я с о ж и д а н и е м (рис. 5.2)
Рис. 5.2. Модель СМО с ожиданием
(N–1) – количество заявок, которое может поместиться в накопителе
В этой модели имеется накопитель заявок на входе ОА. Если заявка приходит от источника 0 в момент времени, когда ОА занят обслуживанием предыдущей заявки, то вновь пришедшая заявка попадает в накопитель, где неограниченно долго ожидает, пока освободится ОА.
М о д е л ь о б с л у ж и в а н и я с о г р а н и ч е н н ы м в р е м е н е м
о ж и д а н и я (рис. 5.3)
Рис. 5.3. Модель СМО с ограниченным временем ожидания:
d – поток заявок, покидающих систему при превышении времени ожидания
В этой модели, как и в предыдущей, имеется накопитель заявок на входе ОА, но время нахождения заявки в накопителе ограничено некоторой величиной.
М н о г о к а н а л ь н а я м о д е л ь СМО с о т к а з а м и (рис. 5.4).
Рис. 5.4. Многоканальная модель СМО с отказами:
n – количество одинаковых обслуживающих аппаратов (приборов)
В этой модели имеется не один ОА, а несколько. Заявки, если это специально не оговорено, могут поступать к любому свободному от обслуживания ОА. Накопителя нет, поэтому данная модель включает свойства модели, показанной на рис. 5.1: отказ в обслуживании заявки означает ее безвозвратную потерю (это происходит только в том случае, если в момент прихода этой заявки все ОА заняты).
М н о г о к а н а л ь н а я м о д е л ь СМО с о г р а н и ч е н н ы м
в р е м е н е м о ж и д а н и я (рис. 5.5)
Рис. 5.5. Многоканальная модель СМО с ограниченным временем ожидания
Эта модель объединяет в себе свойства моделей, представленных на рис. 5.3. и 5.4.
М н о г о к а н а л ь н а я м о д е л ь СМО с о ж и д а н и е м
и в о с с т а н о в л е н и е м о т к а з а в ш и х ОА (рис. 5.6)
Рис. 5.6. Многоканальная модель СМО с ожиданием и восстановлением ОА:
e – обслуживающие аппараты, вышедшие из строя;
f – восстановленные обслуживающие аппараты
Данная модель обладает свойствами моделей, представленных на рис. 5.2 и 5.4, а кроме того свойствами, позволяющими учитывать возможные случайные отказы ОА, которые в этом случае поступают в ремонтный блок 2, где пребывают в течение случайных промежутков времени, затрачиваемых на их восстановление, а затем вновь возвращаются в обслуживающий блок 1.
М н о г о к а н а л ь н а я м о д е л ь СМО с о г р а н и ч е н н ы м
в р е м е н е м о ж и д а н и я и в о с с т а н о в л е н и е м ОА (рис. 5.7)
Рис. 5.7. Многоканальная модель СМО с ограниченным временем ожидания и восстановлением ОА
Данная модель является довольно сложной, поскольку одновременно учитывает свойства двух не самых простых моделей (рис. 5.5 и 5.6).