- •Оглавление
- •Предисловие
- •Введение
- •1. Модели и их свойства
- •Основные понятия и определения
- •Вопросы к разделу 1.1
- •Целенаправленность моделей
- •Вопросы к разделу 1.2
- •Свойства моделей
- •Вопросы к разделу 1.3
- •Способы реализации моделей
- •1.4.1. Материальные модели
- •1.4.2. Виды подобия
- •1.4.3. Идеальные модели
- •Вопросы к разделу 1.4
- •1.5. Виды моделей
- •1.5.1. Познавательные и прагматические модели
- •1.5.2. Детерминированные и вероятностные модели
- •1.5.3. Непрерывные и дискретные модели
- •1.5.4. Статические и динамические модели
- •1.5.5. Линейные и нелинейные модели
- •1.5.6. Стационарные и нестационарные модели
- •1.5.7. Сосредоточенные и распределенные модели
- •1.5.8. Классификация видов моделей
- •Вопросы к разделу 1.5
- •Кибернетические модели систем
- •1.6.1. Модель типа «черный ящик»
- •1.6.2. Модель состава системы
- •1.6.3. Модель структуры системы
- •1.6.4. Графы
- •1.6.5. Структурная схема системы
- •1.6.6. Итоги анализа моделей систем.
- •Вопросы к разделу 1.6
- •2. Аналитические математические модели систем
- •2.1. Общая математическая модель динамической системы
- •Вопросы к разделу 2.1
- •2.2. Частные математические модели динамических систем
- •2.2.1. Модели детерминированных линейных непрерывных систем
- •Модели дискретных систем. Конечные автоматы
- •Вопросы к разделу 2.2
- •2.3. Свойства динамических систем
- •2.4. Линейная непрерывная детерминированная модель многомерной динамической системы в переменных состояния
- •Вопросы к разделу 2.4
- •2.5.7. Определитель Грама
- •Вопросы к разделу 2.5
- •Линейное векторное пространство
- •2.6.1. Характеристические числа и характеристические векторы
- •2.6.2. Формула Бохера
- •2.6.3. Модальная матрица
- •2.6.4. Диагонализация квадратной матрицы
- •Вопросы к разделу 2.6
- •Управляемость и наблюдаемость
- •Вопросы к разделу 2.7
- •Компьютерное моделирование. Численное интегрирование дифференциальных уравнений
- •3.1. Ошибки усечения и округления
- •3.2. Метод Эйлера
- •3.3. Методы Рунге–Кутта
- •Сравнение различных методов решения. Контроль величины шага и устойчивость
- •Вопросы к главе 3
- •4. Динамика развития и использования моделей
- •4.1. Сложности алгоритмизации моделирования
- •Вопросы к главе 4
- •5. Аналитические вероятностные математические модели систем
- •5.1. Аналитические модели систем массового обслуживания
- •5.1.1. Важнейшие выходные параметры смо
- •5.1.2. Простейшие модели смо
- •5.1.3. Общая характеристика моделей смо
- •5.1.4. Дисциплины обслуживания
- •5.1.5. Характеристики входного потока заявок
- •5.1.6. Функция распределения Пуассона
- •5.1.7. Характеристики обслуживания
- •5.1.8. Показательный закон распределения времени обслуживания
- •5.1.9. Показатели качества обслуживания
- •5.1.10. Согласование источника заявок с каналом обслуживания
- •5.1.11. Оценка эффективности многоканальной смо
- •Вопросы к разделу 5.1
- •5.2. Сети Петри
- •5.2.1. Маркировка
- •5.2.2. Правила срабатывания переходов
- •5.2.3. Разновидности сетей Петри
- •5.2.4. Конфликтные ситуации в сетях Петри
- •5.2.5. Пример сети Петри для работы группы пользователей на одной рабочей станции
- •5.2.6. Пример сети Петри для системы обнаружения и устранения неисправностей в технической системе
- •5.2.7. Анализ сетей Петри
- •Вопросы к разделу 5.2
- •6. Имитационные модели систем
- •6.1. Имитационный эксперимент
- •Недостатки имитационного моделирования
- •6.2. Развитие имитационного моделирования
- •Основные фазы развития средств им
- •6.3. Этапы имитационного моделирования
- •6.4. Подходы к построению имитационных моделей
- •6.4.1. Событийный подход
- •6.4.2. Подход сканирования активностей
- •6.4.3. Процессно-ориентированный подход
- •6.5. Разработка программ им
- •6.5.1. Использование для им универсальных языков программирования
- •6.5.2. Использование для им специализированных языков моделирования
- •6.5.3. Создание и использование проблемно-ориентированных систем моделирования
- •6.6. Имитационное моделирование систем массового обслуживания
- •6.6.1. Событийный метод моделирования
- •6.6.2. Схема реализации событийного метода имитационного моделирования
- •Вопросы к главе 6
- •7. Метод «ресурсы–действия–операции» (рдо)
- •7.1. Основные положения метода рдо
- •7.1.1. Ресурсы сложной дискретной системы
- •7.1.2. Действия в сдс
- •7.1.3. Операции в сдс
- •7.1.4. Основные положения рдо-метода
- •7.2. Представление сдс в рдо-методе
- •7.3. Базовая структура инструментальной среды интеллектуальной системы
- •7.4. Продукционный имитатор
- •7.5. Моделирование в среде рдо
- •7.5.1. Основные понятия
- •7.5.2. Объекты исходных данных и объекты, создаваемые рдо-имитатором при выполнении прогона
- •7.5.3. Состав объектов модели
- •7.5.4. Назначение объектов модели
- •7.6. Интегрированная среда моделирования рдо
- •7.6.1. Состав функций исм
- •7.6.2. Главное окно исм рдо
- •7.6.3. Инструментальная панель
- •7.6.4. Работа с рдо-имитатором
- •Описание кадра анимации
- •Пример описания кадра анимации
- •Вопросы к главе 7
- •8. Краткое описание языка gpss
- •8.1. Оператор generate
- •8.2. Оператор function
- •8.3. Операторы split и assemble
- •8.4. Операторы seize и release
- •8.5. Оператор advance
- •8.6. Операторы enter и leave
- •8.7. Операторы queue и depart
- •8.8. Оператор test
- •8.9. Операторы start и terminate
- •8.10. Оператор transfer
- •8.11. Оператор assigne
- •8.12. Операторы управления движением заявок
- •8.13. Вычислительный оператор variable
- •8.14. Оператор синхронизации матсн
- •8.15. Пример программы на языке gpss для смо
- •Программа к примеру смо
- •Вопросы к главе 8
- •9. Планирование компьютерных экспериментов с моделями систем
- •9.1. Основные понятия теории планирования экспериментов
- •9.2. Модели планирования эксперимента
- •9.3. Виды планов экспериментов
- •Вопросы к главе 9
- •10. Обработка и анализ результатов компьютерного моделирования
- •10.1. Методы оценки
- •10.2. Статистические методы обработки
- •10.3. Задачи обработки результатов моделирования
- •10.3.1. Критерий согласия Колмогорова
- •10.3.2. Критерий согласия Пирсона
- •10.3.3. Критерий согласия Смирнова
- •10.3.4. Критерий согласия Стьюдента
- •10.3.5. Критерий согласия Фишера
- •10.4. Анализ и интерпретация результатов компьютерного моделирования
- •10.4.1. Корреляционный анализ результатов моделирования
- •10.4.2. Регрессионный анализ результатов моделирования
- •10.4.3. Дисперсионный анализ результатов моделирования
- •Вопросы к главе 10
- •Заключение
- •Список литературы
- •Приложение 1 Некоторые сведения из теории матриц
- •Основные типы матриц
- •Специальные типы матриц
- •Операции над матрицами Сложение матриц
- •Умножение матриц
- •Дифференцирование матриц
- •Интегрирование матриц
- •Определители
- •Свойства определителей
- •Нуль-граф и полный граф
- •Изоморфные графы
- •Плоские графы
- •Число ребер графа
- •Формула Эйлера для числа вершин, ребер и граней плоского графа
- •Распределение Лапласа
- •Вырожденное (причинное) распределение
- •Приложение 4 Краткие сведения о специализированных языках и проблемно-ориентированных системах имитационного моделирования
- •Предметный указатель
- •Список сокращений
1.6.3. Модель структуры системы
Модель структуры – раскрывает связи внутри системы, отношения между ее элементами и подсистемами. Можно сказать, что структура системы – это совокупность необходимых и достаточных для достижения цели отношений между элементами и подсистемами. В модели структуры сами элементы не рассматриваются, а лишь называются, хотя на практике говорить о связях между элементами целесообразно только после рассмотрения самих элементов.
Реальное количество отношений между элементами системы очень велико, однако в модель включаются только отношения, существенные с точки зрения достижения цели.
Трудность заключается в том, чтобы выявить все реально существующие отношения – зачастую они не известны, к тому же, вообще неизвестно, является ли их число конечным. Интересное исследование было проведено с естественными языками: английским, итальянским и русским. Оказалось, что количество языковых конструкций, выражающих разные отношения типа: быть причиной, быть подобным, состоять из, двигаться от (к, вокруг,…), быть одновременно, находиться под (на, около,…) и т.п., в этих языках примерно одинаково и составляет немногим более 200.
С в о й с т в а и о т н о ш е н и я
Отношение – это связь, в которой участвуют не менее двух объектов. Если элемент x, принадлежащий множеству X, находится в некотором отношении R с элементом y, принадлежащим тому же множеству X, то это можно записать следующим образом:
Если же элемент x, принадлежащий множеству X, не находится в отношении R с элементом y из того же множества X, то это можно записать следующим образом:
Множество всех упорядоченных пар (х, у) называется полным (универсальным) бинарным отношением, которое задается декартовым, или прямым произведением множества X на себя:
Математически любое бинарное отношение R является подмножеством полного множества всех пар, или бинарных отношений, т.е.
Если ввести понятие многоместного отношения, а не только бинарного, то свойство можно рассматривать как одноместное, или унарное отношение. Таким образом, свойство оказывается частным случаем отношения. Свойство – это атрибут одного объекта.
С п о с о б ы з а д а н и я б и н а р н ы х о т н о ш е н и й
Известны как минимум четыре разных способа задания отношений (рис. 1.24). Какой из них в каком случае удобнее использовать, зависит от свойств множества X.
1. Непосредственное перечисление всех пар элементов, состоящих в некотором бинарном отношении, возможно только в случае конечного множества X.
2. Матричный способ задания бинарного отношения R на конечном множестве X заключается в нумерации всех элементов множества, так что матрица отношения R будет определяться своими элементами:
Примером подобного способа задания отношений может служить турнирная таблица, в которой проигрыши и ничьи обозначены нулями, а победы – единицами: такая матрица задает отношение вида «xi – победитель xj».
3. Задание отношения R с помощью сечений используется для определения отношений на бесконечных множествах. Множество
называется верхним сечением отношения R, а множество
называется нижним сечением отношения R.
Рис. 1.24. Способы задания бинарных отношений
Иначе
говоря, верхнее сечение представляет
собой множество всех элементов
,
которые состоят в отношении R
с заданным элементом
,
т.е.
.
Нижнее сечение – множество всех
,
с которыми заданный элемент
находится
в отношении R, т.е.:
.
Отношение определяется однозначно
одним из сечений: верхним или нижним.
Задание отношения с помощью графа (см. п. 1.6.5). Вершинам графа G(R) соответствуют пронумерованные элементы множества X, а дугам (ребрам) графа соответствует наличие отношения R между теми элементами, которые это ребро соединяет между собой; если же
,
то ребро (дуга) между xi
и xj
отсутствует (рис. 1.25).
Рис. 1.25. Граф, задающий отношение R между элементами множества X
Рассмотрим некоторые элементарные свойства отношений, которые помогут впоследствии получать модели для решения нужных прикладных задач.
Э л е м е н т а р н ы е с в о й с т в а б и н а р н ы х о т н о ш е н и й
1. Рефлексивность. Бинарное отношение R на множестве Х называется рефлексивным, если каждый элемент х множества Х находится в этом отношении сам с собой, т.е.
Пример. Если отношение R определить как «управлять», то свойство рефлексивности будет означать самоуправление или автоматическое управление.
2. Антирефлексивность. Бинарное отношение R на множестве Х называется антирефлексивным, если любой х из X не находится в этом отношении сам с собой, а R может выполняться только для несовпадающих элементов:
Пример. Если отношение R определить как «дополнять», то свойство антирефлексивности будет означать невозможность любого элемента x дополнять самого себя.
3. Симметричность. Бинарное отношение на множестве Х называется симметричным, если из того, что х находится в отношении R с у следует, что и y находится в этом отношении R с x, где x, у – любые элементы из Х:
Пример. Если отношение R определить как «создавать сложную конструкцию», то свойство симметричности будет означать, что если любой элемент x создает сложную конструкцию в сочетании с элементом y, то и наоборот, любой элемент y создает сложную конструкцию в сочетании с элементом x.
4. Асимметричность. Бинарное отношение R на множестве Х называется асимметричным, если из того, что х находится в отношении R с у, следует, что y не находится в этом отношении R с x, где x, у – любые элементы из Х:
Очевидно, что асимметричное отношение R одновременно и антирефлексивно.
Пример. Если отношение R определить как «входить в состав сборочного узла», то из того факта, что элемент x входит в состав сборочного узла y, будет следовать, что обратное невозможно, поэтому такое отношение асимметрично.
5. Антисимметричность. Бинарное отношение R на множестве Х называется антисимметричным, если из того, что х находится в отношении R с у и y находится в этом отношении R с x для любых x, y следует, что x=y:
Пример. Фразу: «Благородный рыцарь сражается только с равным себе» можно трактовать как антисимметричность. Из того факта, что два рыцаря x и y сражаются между собой, следует, что они равны.
6. Транзитивность. Бинарное отношение R на множестве Х называется транзитивным, если из того, что х находится в отношении R с у, а y находится в этом отношении R с z, следует, что и х находится в отношении R с z для любых x, y, z из X:
Пример. Пусть отношение R определено как «принадлежать к данной серии». Если установлено, что микросхемы x и y, а также y и z принадлежат к одной серии, то из этого следует, что микросхемы x и z также принадлежат к одной (данной) серии.
7. Отрицательная транзитивность. Бинарное отношение R на множестве Х называется отрицательно транзитивным, если транзитивно «отсутствие отношения» R:
Пример. Пусть x, y и z – последовательные точки радиосхемы, а отношение R означает фильтрацию помех. Тогда, если помехи не отфильтрованы на участке схемы от точки x до точки y и от точки y до точки z, то это значит, что помехи не подавлены от x до z.
8. Сильная транзитивность. Бинарное отношение R на множестве Х называется сильно транзитивным, если оно одновременно транзитивно и отрицательно транзитивно:
Пример. Пусть x, y и z – ретрансляционные станции, последовательно, по цепочке передающие сигналы, а отношение R соответствует передаче сигнала. Если сигнал передан от станции x к станции y и от станции y к станции z, то из этого следует, что сигнал передан от x к z. Обратный вывод справедлив в том случае, если сигнал не передан от станции x к станции y и от станции y к станции z: сигнал не передан от x к z.
Эти элементарные бинарные отношения являются основой для построения других, более сложных отношений.
О т н о ш е н и я э к в и в а л е н т н о с т и, п о р я д к а
и д о м и н и р о в а н и я
А. Отношение эквивалентности. Отношение R на множестве Х называется отношением эквивалентности, если оно одновременно рефлексивно, симметрично и транзитивно. Таким образом, отношение эквивалентности объединяет элементарные свойства 1,3 и 6. Обозначение:
x ~ у.
Примеры отношения эквивалентности: «четность» на множестве натуральных чисел – при этом все четные числа считаются эквивалентными; «быть студентами одной учебной группы» – каждый из студентов группы является элементом множества студентов данного института, и все они эквивалентны друг другу.
В. Отношение нестрогого порядка. Отношение R на множестве Х называется отношением нестрогого порядка, если оно одновременно рефлексивное, антисимметричное и транзитивное, т.е объединяет в себе свойства 1, 5 и 6. Обозначение:
x ≤ у.
С. Отношение строгого порядка. Отношение R на множестве Х называется отношением строгого порядка, если оно одновременно антирефлексивное, асимметричное и транзитивное, т.е. объединяет в себе свойства 2, 4 и 6. Иначе отношение нестрогого порядка можно рассматривать как объединение отношений строгого порядка и эквивалентности, т.е. С и А. Обозначение:
x < y.
D. Отношение доминирования. Отношение R на множестве Х называется отношением доминирования, если оно обладает одновременно свойствами антирефлексивности и асимметричности (свойства 2 и 4). Отношение строгого порядка – частный случай отношения доминирования, при котором имеет место еще и транзитивность (6). Если элемент x доминирует (т.е. в каком-то смысле явно превосходит) над элементом y, то это обозначается следующим образом:
x >> у .
М о д е л ь п р и н я т и я р е ш е н и й н а о с н о в е
б и н а р н ы х о т н о ш е н и й
Отношения порядка и эквивалентности позволяют создать модель такого важного вида деятельности, как принятие решений (выбор). Выбор приходится осуществлять очень часто и в самых различных ситуациях – от бытовых случаев до проектирования сложных технических систем. Бинарные отношения позволяют сравнивать между собой различные варианты (которые называются альтернативами), являющиеся элементами множества X, и выбирать из двух более предпочтительную альтернативу. Так, в случае конечных множеств X удобно находить наилучшие альтернативы с помощью графа предпочтений, стрелки которого направлены в сторону менее предпочтимой альтернативы (рис. 1.26). Выделенные вершины графа, из которых ребра (стрелки) только выходят (на рисунке это альтернативы 1 и 5), – это так называемые недоминируемые (наилучшие) альтернативы.
Рис. 1.26. Пример графа предпочтений
Если граф сильно транзитивен (т.е. транзитивен и по наличию, и по отсутствию стрелок) и антирефлексивен (отсутствуют петли), то такой выбор сводится к однокритериальному выбору. Другие ситуации выбора можно описать другими типами графов.
