
- •Оглавление
- •Предисловие
- •Введение
- •1. Модели и их свойства
- •Основные понятия и определения
- •Вопросы к разделу 1.1
- •Целенаправленность моделей
- •Вопросы к разделу 1.2
- •Свойства моделей
- •Вопросы к разделу 1.3
- •Способы реализации моделей
- •1.4.1. Материальные модели
- •1.4.2. Виды подобия
- •1.4.3. Идеальные модели
- •Вопросы к разделу 1.4
- •1.5. Виды моделей
- •1.5.1. Познавательные и прагматические модели
- •1.5.2. Детерминированные и вероятностные модели
- •1.5.3. Непрерывные и дискретные модели
- •1.5.4. Статические и динамические модели
- •1.5.5. Линейные и нелинейные модели
- •1.5.6. Стационарные и нестационарные модели
- •1.5.7. Сосредоточенные и распределенные модели
- •1.5.8. Классификация видов моделей
- •Вопросы к разделу 1.5
- •Кибернетические модели систем
- •1.6.1. Модель типа «черный ящик»
- •1.6.2. Модель состава системы
- •1.6.3. Модель структуры системы
- •1.6.4. Графы
- •1.6.5. Структурная схема системы
- •1.6.6. Итоги анализа моделей систем.
- •Вопросы к разделу 1.6
- •2. Аналитические математические модели систем
- •2.1. Общая математическая модель динамической системы
- •Вопросы к разделу 2.1
- •2.2. Частные математические модели динамических систем
- •2.2.1. Модели детерминированных линейных непрерывных систем
- •Модели дискретных систем. Конечные автоматы
- •Вопросы к разделу 2.2
- •2.3. Свойства динамических систем
- •2.4. Линейная непрерывная детерминированная модель многомерной динамической системы в переменных состояния
- •Вопросы к разделу 2.4
- •2.5.7. Определитель Грама
- •Вопросы к разделу 2.5
- •Линейное векторное пространство
- •2.6.1. Характеристические числа и характеристические векторы
- •2.6.2. Формула Бохера
- •2.6.3. Модальная матрица
- •2.6.4. Диагонализация квадратной матрицы
- •Вопросы к разделу 2.6
- •Управляемость и наблюдаемость
- •Вопросы к разделу 2.7
- •Компьютерное моделирование. Численное интегрирование дифференциальных уравнений
- •3.1. Ошибки усечения и округления
- •3.2. Метод Эйлера
- •3.3. Методы Рунге–Кутта
- •Сравнение различных методов решения. Контроль величины шага и устойчивость
- •Вопросы к главе 3
- •4. Динамика развития и использования моделей
- •4.1. Сложности алгоритмизации моделирования
- •Вопросы к главе 4
- •5. Аналитические вероятностные математические модели систем
- •5.1. Аналитические модели систем массового обслуживания
- •5.1.1. Важнейшие выходные параметры смо
- •5.1.2. Простейшие модели смо
- •5.1.3. Общая характеристика моделей смо
- •5.1.4. Дисциплины обслуживания
- •5.1.5. Характеристики входного потока заявок
- •5.1.6. Функция распределения Пуассона
- •5.1.7. Характеристики обслуживания
- •5.1.8. Показательный закон распределения времени обслуживания
- •5.1.9. Показатели качества обслуживания
- •5.1.10. Согласование источника заявок с каналом обслуживания
- •5.1.11. Оценка эффективности многоканальной смо
- •Вопросы к разделу 5.1
- •5.2. Сети Петри
- •5.2.1. Маркировка
- •5.2.2. Правила срабатывания переходов
- •5.2.3. Разновидности сетей Петри
- •5.2.4. Конфликтные ситуации в сетях Петри
- •5.2.5. Пример сети Петри для работы группы пользователей на одной рабочей станции
- •5.2.6. Пример сети Петри для системы обнаружения и устранения неисправностей в технической системе
- •5.2.7. Анализ сетей Петри
- •Вопросы к разделу 5.2
- •6. Имитационные модели систем
- •6.1. Имитационный эксперимент
- •Недостатки имитационного моделирования
- •6.2. Развитие имитационного моделирования
- •Основные фазы развития средств им
- •6.3. Этапы имитационного моделирования
- •6.4. Подходы к построению имитационных моделей
- •6.4.1. Событийный подход
- •6.4.2. Подход сканирования активностей
- •6.4.3. Процессно-ориентированный подход
- •6.5. Разработка программ им
- •6.5.1. Использование для им универсальных языков программирования
- •6.5.2. Использование для им специализированных языков моделирования
- •6.5.3. Создание и использование проблемно-ориентированных систем моделирования
- •6.6. Имитационное моделирование систем массового обслуживания
- •6.6.1. Событийный метод моделирования
- •6.6.2. Схема реализации событийного метода имитационного моделирования
- •Вопросы к главе 6
- •7. Метод «ресурсы–действия–операции» (рдо)
- •7.1. Основные положения метода рдо
- •7.1.1. Ресурсы сложной дискретной системы
- •7.1.2. Действия в сдс
- •7.1.3. Операции в сдс
- •7.1.4. Основные положения рдо-метода
- •7.2. Представление сдс в рдо-методе
- •7.3. Базовая структура инструментальной среды интеллектуальной системы
- •7.4. Продукционный имитатор
- •7.5. Моделирование в среде рдо
- •7.5.1. Основные понятия
- •7.5.2. Объекты исходных данных и объекты, создаваемые рдо-имитатором при выполнении прогона
- •7.5.3. Состав объектов модели
- •7.5.4. Назначение объектов модели
- •7.6. Интегрированная среда моделирования рдо
- •7.6.1. Состав функций исм
- •7.6.2. Главное окно исм рдо
- •7.6.3. Инструментальная панель
- •7.6.4. Работа с рдо-имитатором
- •Описание кадра анимации
- •Пример описания кадра анимации
- •Вопросы к главе 7
- •8. Краткое описание языка gpss
- •8.1. Оператор generate
- •8.2. Оператор function
- •8.3. Операторы split и assemble
- •8.4. Операторы seize и release
- •8.5. Оператор advance
- •8.6. Операторы enter и leave
- •8.7. Операторы queue и depart
- •8.8. Оператор test
- •8.9. Операторы start и terminate
- •8.10. Оператор transfer
- •8.11. Оператор assigne
- •8.12. Операторы управления движением заявок
- •8.13. Вычислительный оператор variable
- •8.14. Оператор синхронизации матсн
- •8.15. Пример программы на языке gpss для смо
- •Программа к примеру смо
- •Вопросы к главе 8
- •9. Планирование компьютерных экспериментов с моделями систем
- •9.1. Основные понятия теории планирования экспериментов
- •9.2. Модели планирования эксперимента
- •9.3. Виды планов экспериментов
- •Вопросы к главе 9
- •10. Обработка и анализ результатов компьютерного моделирования
- •10.1. Методы оценки
- •10.2. Статистические методы обработки
- •10.3. Задачи обработки результатов моделирования
- •10.3.1. Критерий согласия Колмогорова
- •10.3.2. Критерий согласия Пирсона
- •10.3.3. Критерий согласия Смирнова
- •10.3.4. Критерий согласия Стьюдента
- •10.3.5. Критерий согласия Фишера
- •10.4. Анализ и интерпретация результатов компьютерного моделирования
- •10.4.1. Корреляционный анализ результатов моделирования
- •10.4.2. Регрессионный анализ результатов моделирования
- •10.4.3. Дисперсионный анализ результатов моделирования
- •Вопросы к главе 10
- •Заключение
- •Список литературы
- •Приложение 1 Некоторые сведения из теории матриц
- •Основные типы матриц
- •Специальные типы матриц
- •Операции над матрицами Сложение матриц
- •Умножение матриц
- •Дифференцирование матриц
- •Интегрирование матриц
- •Определители
- •Свойства определителей
- •Нуль-граф и полный граф
- •Изоморфные графы
- •Плоские графы
- •Число ребер графа
- •Формула Эйлера для числа вершин, ребер и граней плоского графа
- •Распределение Лапласа
- •Вырожденное (причинное) распределение
- •Приложение 4 Краткие сведения о специализированных языках и проблемно-ориентированных системах имитационного моделирования
- •Предметный указатель
- •Список сокращений
1.5.8. Классификация видов моделей
Рассмотренные выше виды моделей входят в классификацию, приведенную в учебнике [5]. Схема классификации приведена на рис. 1.20.
На схеме темным фоном выделены те виды моделей, которые изучаются в данной дисциплине более подробно.
Особенности использования детерминированных и стохастических, дискретных и непрерывных, статических и динамических, стационарных и нестационарных, распределенных и сосредоточенных моделей были рассмотрены выше.
В зависимости от формы представления оригинала, т.е. средств, используемых при создании моделей, можно выделить идеальное (абстрактное) и реальное моделирование.
Идеальное, или абстрактное моделирование зачастую позволяет исследовать модели объектов, которые практически нереализуемы в заданном интервале времени или не поддаются физическим экспериментам. Идеальное моделирование, как уже говорилось, реализуется посредством сознания человека в виде наглядных, символических и математических моделей.
Рис. 1.20. Схема классификации видов идеальных и реальных моделей
Наглядные модели создаются на основе представлений людей о реальных объектах и явлениях и о протекающих в них процессах. При этом гипотетические модели являются наименее информативными, опираются на недостаточный для построения формальных моделей уровень знаний исследователя об объекте, отраженный в гипотезах, положенных в основу этих моделей.
Аналоговые модели используют аналогии разных уровней: от полной аналогии, существующей только для относительно простых объектов, до более низких уровней частных аналогий, охватывающих несколько или даже всего одну сторону функционирования сложного объекта. Идеальные наглядные макеты применяются в тех случаях, когда процессы, протекающие в реальном объекте, не поддаются физическому моделированию. Для построения идеальных макетов также используются аналогии, как правило, основанные на причинно-следственных связях между процессами и явлениями, происходящими в моделируемом объекте.
Символьные модели включают знаковые и языковые модели, рассмотренные выше (пп. 1.4.7 и 1.4.8). Они представляют собой логические объекты, замещающие реальные объекты-оригиналы и выражающие с помощью определенной системы (алфавита) знаков или символов основные понятия этих оригиналов, а с помощью логических операций – отношения между понятиями.
Математические модели представляют собой математические объекты, соответствующие реальным объектам или процессам, конкретный вид которых зависит как от природы реального объекта, так и от задач исследования и требований адекватности и точности их решения. Математические модели подразделяют на аналитические, имитационные и комбинированные.
Аналитические модели характеризуются тем, что процессы функционирования элементов исходной реальной системы записываются в них в виде функциональных соотношений: алгебраических, дифференциальных, интегральных, конечно-разностных и др., а также в виде логических условий. Примером могут служить математические аналитические модели, использующие переменные состояния и аппарат матриц, подробно рассмотренные в п. 2.4 данного учебника. Полученные аналитические модели исследуют следующими методами: 1) аналитическим; 2) численным; 3) качественным.
Аналитический метод исследования необходим в том случае, когда нужно получить в общем виде явные зависимости для искомых характеристик. Аналитический метод решения продемонстрирован в примере п. 1.5.4. При невозможности или нецелесообразности решения уравнений в общем виде стремятся получить числовые результаты для конкретных начальных данных, что и приводит к так называемому численному методу исследования. Подобный численный метод решения дифференциальных уравнений рассматривается в гл. 3. Качественный метод исследования позволяет даже при отсутствии решения в явном виде определить некоторые важные свойства этого решения, например, его устойчивость.
Как правило, аналитический метод применим к относительно простым объектам и процессам или к упрощенным моделям. Как это было показано, возможно аналитическое решение линейных стационарных дифференциальных уравнений, но это невозможно в общем случае для нелинейных и/или нестационарных дифференциальных уравнений. Численный метод более универсален и позволяет исследовать (по сравнению с аналитическим) более широкий класс систем. Кроме того, он ориентирован на применение компьютеров. Качественные методы анализа используются, например, в теории автоматического управления для оценки эффективности различных вариантов систем управления.
Имитационные модели отображают все элементарные явления, составляющие моделируемый процесс с сохранением их логической структуры и последовательности протекания во времени, что позволяет по исходным данным получить сведения о состоянии процесса в определенные моменты времени и оценить характеристики процесса. Основное преимущество имитационного моделирования по сравнению с аналитическим заключается в возможности решения более сложных задач. Имитационные модели позволяют достаточно просто учитывать такие факторы, как наличие дискретных и непрерывных элементов, нелинейные и нестационарные характеристики элементов, разнообразные случайные воздействия и другие, которые создают непреодолимые трудности при аналитических исследованиях. В настоящее время имитационное моделирование представляет собой наиболее эффективный метод исследования сложных и больших систем, а иногда и единственный практически доступный метод получения информации о поведении системы, особенно на этапе ее проектирования. Более подробно имитационные модели и методы рассмотрены в главе 6.
При реальном моделировании исследование характеристик объекта производится либо полностью на самом реальном объекте, либо частично на реальном объекте, частично на модели. При этом реальный объект может работать как в нормальном режиме, так и в специальных режимах (в ином масштабе времени или при других значениях параметров и переменных). Хотя реальное моделирование следует признать наиболее адекватным, его возможности весьма ограничены в силу естественных ограничений со стороны реальных объектов. Так, например, проведение реального моделирования сложной автоматизированной системы управления технологическими процессами (АСУТП) потребовало бы прежде всего создания такой системы, а затем проведения экспериментов с управляемыми объектами, т.е. с технологическими процессами, что в большинстве случаев невозможно в условиях реальных действующих предприятий. К тому же в любом случае реальное моделирование обходится чрезвычайно дорого.
Натурные модели подразумевают использование при исследовании реальных объектов с последующей обработкой результатов эксперимента на основе теории подобия. Такие разновидности натурного эксперимента, как производственный эксперимент и комплексные испытания, обладают высокой степенью достоверности. При производственном эксперименте натурное моделирование включает обобщение опыта, накопленного в ходе производственного процесса за счет обработки на базе теории подобия статистического материала по данному процессу и получения его обобщенных характеристик. При комплексных испытаниях повторение испытаний изделий позволяет выявить общие закономерности этих изделий, на основании которых можно судить об их надежности, качестве и других характеристиках.
Научный эксперимент отличается широким использованием средств автоматизации при его проведении, разнообразием средств обработки информации и возможностью вмешательства человека в этот процесс.
К реальным моделям относят также и физические модели, которые отличаются от натурных тем, что применяются в исследовательских установках, сохраняющих природу явлений, и обладают физическим подобием. В процессе задаются некоторые характеристики внешней среды, и исследуется поведение либо реального объекта, либо его модели при заданных или создаваемых искусственно воздействиях со стороны внешней среды. Физическое моделирование может происходить как в реальном, так и в нереальном масштабе времени, а также и вообще без учета времени («замороженные» процессы).