- •Оглавление
- •Предисловие
- •Введение
- •1. Модели и их свойства
- •Основные понятия и определения
- •Вопросы к разделу 1.1
- •Целенаправленность моделей
- •Вопросы к разделу 1.2
- •Свойства моделей
- •Вопросы к разделу 1.3
- •Способы реализации моделей
- •1.4.1. Материальные модели
- •1.4.2. Виды подобия
- •1.4.3. Идеальные модели
- •Вопросы к разделу 1.4
- •1.5. Виды моделей
- •1.5.1. Познавательные и прагматические модели
- •1.5.2. Детерминированные и вероятностные модели
- •1.5.3. Непрерывные и дискретные модели
- •1.5.4. Статические и динамические модели
- •1.5.5. Линейные и нелинейные модели
- •1.5.6. Стационарные и нестационарные модели
- •1.5.7. Сосредоточенные и распределенные модели
- •1.5.8. Классификация видов моделей
- •Вопросы к разделу 1.5
- •Кибернетические модели систем
- •1.6.1. Модель типа «черный ящик»
- •1.6.2. Модель состава системы
- •1.6.3. Модель структуры системы
- •1.6.4. Графы
- •1.6.5. Структурная схема системы
- •1.6.6. Итоги анализа моделей систем.
- •Вопросы к разделу 1.6
- •2. Аналитические математические модели систем
- •2.1. Общая математическая модель динамической системы
- •Вопросы к разделу 2.1
- •2.2. Частные математические модели динамических систем
- •2.2.1. Модели детерминированных линейных непрерывных систем
- •Модели дискретных систем. Конечные автоматы
- •Вопросы к разделу 2.2
- •2.3. Свойства динамических систем
- •2.4. Линейная непрерывная детерминированная модель многомерной динамической системы в переменных состояния
- •Вопросы к разделу 2.4
- •2.5.7. Определитель Грама
- •Вопросы к разделу 2.5
- •Линейное векторное пространство
- •2.6.1. Характеристические числа и характеристические векторы
- •2.6.2. Формула Бохера
- •2.6.3. Модальная матрица
- •2.6.4. Диагонализация квадратной матрицы
- •Вопросы к разделу 2.6
- •Управляемость и наблюдаемость
- •Вопросы к разделу 2.7
- •Компьютерное моделирование. Численное интегрирование дифференциальных уравнений
- •3.1. Ошибки усечения и округления
- •3.2. Метод Эйлера
- •3.3. Методы Рунге–Кутта
- •Сравнение различных методов решения. Контроль величины шага и устойчивость
- •Вопросы к главе 3
- •4. Динамика развития и использования моделей
- •4.1. Сложности алгоритмизации моделирования
- •Вопросы к главе 4
- •5. Аналитические вероятностные математические модели систем
- •5.1. Аналитические модели систем массового обслуживания
- •5.1.1. Важнейшие выходные параметры смо
- •5.1.2. Простейшие модели смо
- •5.1.3. Общая характеристика моделей смо
- •5.1.4. Дисциплины обслуживания
- •5.1.5. Характеристики входного потока заявок
- •5.1.6. Функция распределения Пуассона
- •5.1.7. Характеристики обслуживания
- •5.1.8. Показательный закон распределения времени обслуживания
- •5.1.9. Показатели качества обслуживания
- •5.1.10. Согласование источника заявок с каналом обслуживания
- •5.1.11. Оценка эффективности многоканальной смо
- •Вопросы к разделу 5.1
- •5.2. Сети Петри
- •5.2.1. Маркировка
- •5.2.2. Правила срабатывания переходов
- •5.2.3. Разновидности сетей Петри
- •5.2.4. Конфликтные ситуации в сетях Петри
- •5.2.5. Пример сети Петри для работы группы пользователей на одной рабочей станции
- •5.2.6. Пример сети Петри для системы обнаружения и устранения неисправностей в технической системе
- •5.2.7. Анализ сетей Петри
- •Вопросы к разделу 5.2
- •6. Имитационные модели систем
- •6.1. Имитационный эксперимент
- •Недостатки имитационного моделирования
- •6.2. Развитие имитационного моделирования
- •Основные фазы развития средств им
- •6.3. Этапы имитационного моделирования
- •6.4. Подходы к построению имитационных моделей
- •6.4.1. Событийный подход
- •6.4.2. Подход сканирования активностей
- •6.4.3. Процессно-ориентированный подход
- •6.5. Разработка программ им
- •6.5.1. Использование для им универсальных языков программирования
- •6.5.2. Использование для им специализированных языков моделирования
- •6.5.3. Создание и использование проблемно-ориентированных систем моделирования
- •6.6. Имитационное моделирование систем массового обслуживания
- •6.6.1. Событийный метод моделирования
- •6.6.2. Схема реализации событийного метода имитационного моделирования
- •Вопросы к главе 6
- •7. Метод «ресурсы–действия–операции» (рдо)
- •7.1. Основные положения метода рдо
- •7.1.1. Ресурсы сложной дискретной системы
- •7.1.2. Действия в сдс
- •7.1.3. Операции в сдс
- •7.1.4. Основные положения рдо-метода
- •7.2. Представление сдс в рдо-методе
- •7.3. Базовая структура инструментальной среды интеллектуальной системы
- •7.4. Продукционный имитатор
- •7.5. Моделирование в среде рдо
- •7.5.1. Основные понятия
- •7.5.2. Объекты исходных данных и объекты, создаваемые рдо-имитатором при выполнении прогона
- •7.5.3. Состав объектов модели
- •7.5.4. Назначение объектов модели
- •7.6. Интегрированная среда моделирования рдо
- •7.6.1. Состав функций исм
- •7.6.2. Главное окно исм рдо
- •7.6.3. Инструментальная панель
- •7.6.4. Работа с рдо-имитатором
- •Описание кадра анимации
- •Пример описания кадра анимации
- •Вопросы к главе 7
- •8. Краткое описание языка gpss
- •8.1. Оператор generate
- •8.2. Оператор function
- •8.3. Операторы split и assemble
- •8.4. Операторы seize и release
- •8.5. Оператор advance
- •8.6. Операторы enter и leave
- •8.7. Операторы queue и depart
- •8.8. Оператор test
- •8.9. Операторы start и terminate
- •8.10. Оператор transfer
- •8.11. Оператор assigne
- •8.12. Операторы управления движением заявок
- •8.13. Вычислительный оператор variable
- •8.14. Оператор синхронизации матсн
- •8.15. Пример программы на языке gpss для смо
- •Программа к примеру смо
- •Вопросы к главе 8
- •9. Планирование компьютерных экспериментов с моделями систем
- •9.1. Основные понятия теории планирования экспериментов
- •9.2. Модели планирования эксперимента
- •9.3. Виды планов экспериментов
- •Вопросы к главе 9
- •10. Обработка и анализ результатов компьютерного моделирования
- •10.1. Методы оценки
- •10.2. Статистические методы обработки
- •10.3. Задачи обработки результатов моделирования
- •10.3.1. Критерий согласия Колмогорова
- •10.3.2. Критерий согласия Пирсона
- •10.3.3. Критерий согласия Смирнова
- •10.3.4. Критерий согласия Стьюдента
- •10.3.5. Критерий согласия Фишера
- •10.4. Анализ и интерпретация результатов компьютерного моделирования
- •10.4.1. Корреляционный анализ результатов моделирования
- •10.4.2. Регрессионный анализ результатов моделирования
- •10.4.3. Дисперсионный анализ результатов моделирования
- •Вопросы к главе 10
- •Заключение
- •Список литературы
- •Приложение 1 Некоторые сведения из теории матриц
- •Основные типы матриц
- •Специальные типы матриц
- •Операции над матрицами Сложение матриц
- •Умножение матриц
- •Дифференцирование матриц
- •Интегрирование матриц
- •Определители
- •Свойства определителей
- •Нуль-граф и полный граф
- •Изоморфные графы
- •Плоские графы
- •Число ребер графа
- •Формула Эйлера для числа вершин, ребер и граней плоского графа
- •Распределение Лапласа
- •Вырожденное (причинное) распределение
- •Приложение 4 Краткие сведения о специализированных языках и проблемно-ориентированных системах имитационного моделирования
- •Предметный указатель
- •Список сокращений
1.5.6. Стационарные и нестационарные модели
Стационарными называют объекты и процессы, параметры которых не изменяются с течением времени. Зачастую стационарность модели является следствием намеренного упрощения описываемого объекта или процесса. Примером стационарной модели может служить дифференциальное уравнение с постоянными, т.е. не зависящими от времени коэффициентами:
Большинство реальных систем и процессов не обладает свойством стационарности: со временем изнашиваются соприкасающиеся детали механизмов, в доменной печи обгорают свод и стены топки, изменяя теплоотдачу, сечение водопроводных труб уменьшается за счет отложения на стенках карбонатов. Под воздействием внешней среды со временем в результате так называемых причин естественного старения изменяются такие характеристики материалов, как упругость, прозрачность, магнитная и диэлектрическая проницаемость, теплопроводность и др. Такие изменения, разумеется, нежелательны. Но иногда изменения свойств с течением времени бывают нужны: например, в термисторах используется свойство изменения внутреннего электрического сопротивления в зависимости от температуры внешней среды (поскольку температура изменяется во времени, то и сопротивление в конечном счете зависит от времени). Если изменения параметров незначительны за время рассмотрения процесса или системы, то пользуются приближенными стационарными моделями, которые можно исследовать аналитически, благодаря хорошо разработанному математическому аппарату.
Для нестационарной модели важно, что изменения параметров происходят не за любое время вообще, а за время, сопоставимое со временем, в течение которого процесс исследуется, например, за время переходного процесса. Пример нестационарной модели – уравнение с коэффициентами, явно зависящими от времени:
в котором даже одного из коэффициентов 2t или 4sin(t) вполне достаточно, чтобы модель была нестационарной.
Нестационарные модели являются существенно более сложными, чем стационарные. Аналитическое решение для них возможно получить только в отдельных, довольно редких случаях. В общем случае исследовать нестационарные модели удается только с помощью численных методов.
1.5.7. Сосредоточенные и распределенные модели
Математическими моделями на микроуровне проектирования служат дифференциальные уравнения в частных производных или интегральные уравнения, описывающие поля физических величин, т.е. модели с распределенными параметрами. Независимыми переменными являются пространственные координаты x, y, z и время t. Примерами таких моделей являются уравнения математической физики с заданными краевыми условиями. Например, уравнение теплопроводности:
которое описывает зависимость температуры Т не только от времени t, но и от расстояния x сечения стержня от нагреваемого конца (рис. 1.19).
Рис.
1.19. Изменение температуры в зависимости
от времени и расстояния сечения от
нагреваемого конца
Уравнения математической физики имеют общий вид: LV(z)=f(z), где z=(t,x,y,z) – вектор независимых переменных; L – дифференциальный оператор; V(z) – функция, определяемая природой описываемого объекта.
Другие примеры уравнений в частных производных: уравнения диффузии, упругости, электро- и газодинамики.
Уравнение диффузии описывает зависимость концентрации частиц N не только от времени t, но и от положения (x, y, z) точки в теле (в среде):
где D – коэффициент диффузии.
Уравнения непрерывности описывают изменения дырочного и электронного токов в полупроводниковых приборах. Для дырок:
для электронов:
где p – концентрация дырок, n – электронов; q – заряд электрона; Jp и Jn – плотности дырочного и электронного токов; gp и gn – скорости процессов генерации-рекомбинации дырок и электронов.
Уравнение теплопроводности в общем случае трех пространственных координат (а не только одной, как в случае со стержнем) также записывается через дивергенцию и градиент температуры:
где С – удельная теплоемкость; D – плотность; Т – температура; t – время;
8 – коэффициент теплопроводности; g – количество теплоты, выделяемой в единицу времени в единице объема.
Напомним, что градиент есть векторная функция:
Если обозначить частные производные
то дивергенцию – скалярную функцию – можно записать в следующем виде:
