
- •2.Теоретико-методичні основи загальних прийомів роботи над текстовими задачами з молодшими школярами
- •2 Етап – аналіз задачі.
- •3 Етап – складання плану.
- •4 Етап – запис розв’язання задачі.
- •5 Етап – робота над розв’язаною задачею.
- •3. Теоретико-методичні основи підготовчої роботи до ознайомлення з першою простою текстовою задачею
- •4.Теоретико-методичні основи ознайомлення учнів з першою простою текстовою задачею
- •5. Теоретико-методичні основи підготовчої роботи до введення перших простих текстових задач на додавання, віднімання, множення та ділення
- •1. Теоретико-методичні основи підготовчої роботи до задач на розкриття конкретного змісту дії додавання та віднімання.
- •6.Теоретико-методичні основи навчання учнів розв'язувати прості задачі на додавання і віднімання Прості задачі, які розв’язуються дією додавання
- •Прості задачі, які розв’язуються дією віднімання
- •7. Теоретико-методичні основи навчання учнів розв'язувати прості задачі на множення та ділення Прості задачі, які розв’язуються дію множення
- •Прості задачі, які розв’язуються дією ділення
3. Теоретико-методичні основи підготовчої роботи до ознайомлення з першою простою текстовою задачею
Підготовча робота до ознайомлення дітей з першою текстовою задачею розпочинається з перших уроків математики у початкових класах і продовжується до уроку, тема якого “Задача”. Головним у підготовці учнів до введення першої текстової задачі є виконання практичних вправ, у процесі яких учні можуть оперувати реальними предметами, їхніми зображеннями на картинках або моделях, їхніми замінниками у вигляді символічної наочності (геометричні фігури, лічильні палички тощо). Об’єднуючи їх в одну множину або вилучаючи частину з даної, школярі визначають їхню чисельність або порівнюють отримані множини з даними. Зазначимо, що вчитель не повинен надавати перевагу якомусь одному виду наочності, бо для одних дітей в силу їхніх індивідуально-психологічних особливостей це створюватиме додаткові труднощі, а для інших – гальмуватиме їхній розвиток. Отже, навіть вибір наочності повинен здійснюватися вчителем з урахуванням потреб, запитів і можливостей кожної особистості. На жаль, спостереження за роботою вчителів свідчить, що на уроках використовується та наочність, яка є у вчителя без врахування індивідуально-психологічних особливостей школярів.
На підготовчому етапі до введення першої текстової задачі вчитель повинен навчити дітей переводити життєві ситуації на мову математичних символів, встановлювати співвідношення між словами і математичними діями: якщо прилетіли, то слід виконувати дію додавання (на мові символів це можна виражати так: ■+▲=◙); якщо відлетіли, то слід виконувати дію віднімання (на мові символів це можна виражати так: ■-▲=◙). Пізніше необхідно звернути увагу принаймні тих дітей, які це зможуть усвідомити, що не завжди слова асоціюються з відповідними арифметичними діями (наприклад: спочатку відсунемо 5 кружечків, а потім ще 2. Скільки всього кружечків відсунули?).
Аналіз системи вправ підручників з математики і методичних посібників для вчителів початкових класів дозволяє зробити висновок про належність до неї таких завдань до підготовчої роботи:
завдання на виділення груп однорідних предметів за різними ознаками (наприклад: на набірному полотні 5 зелених і 2 жовтих трикутники. Дітям необхідно з’ясувати, які предмети там є, чим вони відрізняються. Скільки предметів у кожній групі. Скільки всього предметів або на скільки предметів в одній групі більше. чи менше);
вправи на виконання операцій об’єднання множин або на вилучення частини множини (наприклад: виставлено 5 геометричних фігур, із яких 3 трикутника і 2 кружечки. Необхідно з’ясувати з допомогою запитань: які геометричні фігури виставлено? Скільки їх всього? Скільки їх залишиться, якщо забрати одну із груп? Сформувати уміння виконувати операції об'єднання двох множин і вилучення частини з множини важливо тому, що воно допомагатиме дітям у майбутньому за текстом задач осмислити дії додавання й віднімання.);
вправи на порівняння сукупностей предметів (наприклад: на різних поличках набірного полотна виставлено різну кількість предметів. Слід з’ясувати: які предмети виставлено? Яких предметів більше? Як зрівняти ці множини?);
розв’язування прикладів на додавання і віднімання;
завдання, основне призначення яких полягає в тому, щоб формувати у школярів такі контрастні поняття як “більше – менше – стільки ж”, “товщий – тонший – такої ж товщини”, “довший – коротший – такої ж довжини” (наприклад: на малюнку зображено два олівці різної довжини і учням пропонується з’ясувати: який олівець довший? який коротший?);
вправи на складання прикладів за малюнками підручника з аналізом кількісних змін на малюнку (наприклад: на малюнку зображено 4 жовтих курчати, до яких підбігають 2 чорних. Які тварини зображені на малюнку? Якого кольору є курчата? Скільки курчаток? Що роблять жовті курчата? Скільки підбігло чорних курчат? Більше чи менше всього стало курчаток, якщо підбігло ще двоє? Якою дією знайдемо загальну кількість курчаток? Як це записати прикладом?);
вправи, пов’язані з аналізом парних картинок, на яких відображено конкретні життєві ситуації (наприклад: на лівому малюнку зображено 5 дітей, які граються, а на правому, що двоє пішли. Хто зображений на лівому малюнку? Що вони роблять? Скільки дітей грається? Що зображене на правому малюнку? Скільки дітей у нас гралося спочатку? Скільки дітей пішло додому? Скільки дітей залишилось гратися? Якою дією це можна визначити? Чому? Як це записати прикладом?);
завдання - практичні вправи (наприклад: вчитель пропонує учням взяти в праву руку 2 олівці, а в ліву - 1. Після цього вчитель запитує: скільки олівців у правій руці? – 2. Скільки олівців у лівій руці? – 1. Скільки всього олівців в обох руках? – 3.);
вправи, які фактично вже є текстовими задачами, але в яких частина умови подається текстом, а частина – малюнком. Приклади таких завдань представлено у таблиці № 7. Розміщення таких завдань одне за одним вказує на те, що їх слід розглядати у зіставленні і протиставлення одна з одною. Розв'язування таких вправ частина дітей відповідно до своїх індивідуально-психологічних особливостей проводитиме на основі дій з предметами, а інша – на основі виконання операцій над числами. Поступово школярів слід переводити від можливості визначити чисельність одержаної множини на основі лічби до визначення чисельності на основі операцій над числами.
Таблиця № 7.
-
У Ніни - ☻☻☻☻☻☻.
У Ірини - на 4 менше.
Скільки ... ?
У Володі - ☻☻☻.
У Олега - на 4 більше.
Скільки ...?
Як видно, всі наведені вправи, крім четвертого й п’ятого виду, є фактично задачами, але вчитель не застосовує терміну “задача”, хоча й розглядає їх. Отже, у процесі підготовчої роботи до ознайомлення учнів з першою текстовою задачею вони використовуються неявно, а тому в методичній літературі їх називають задачі-розповіді. Зазначимо, що крім підготовчої роботи до введення першої текстової задачі є підготовча робота до введення кожного виду простих задач, сутність якої розкриємо пізніше.