- •Исследование схем выпрямления и умножения
- •1.1. Общие сведения
- •Характеристики некоторых типов диодов
- •Параметры схем выпрямления
- •1.2. Классификация схем выпрямления
- •1.3. Однофазные схемы выпрямления
- •1.4. Двухполярные схемы выпрямления
- •1.5. Трехфазные схемы выпрямления
- •1.6. Регулирование напряжения выпрямителей
- •1.7. Схемы выпрямления с умножением напряжения
- •1.8. Выполнение лабораторной работы
- •Результаты измерения напряжений
- •Исследование полупроводниковых стабилизаторов постоянного напряжения
- •2.1. Общие сведения
- •2.2. Параметрические стабилизаторы напряжения
- •2.3. Компенсационные стабилизаторы напряжения
- •2.4. Интегральные стабилизаторы напряжения
- •Характеристики регулируемых отечественных стабилизаторов
- •Характеристики регулируемых зарубежных стабилизаторов
- •2.5. Выполнение лабораторной работы
- •3.1. Общие сведения
- •3.2. Импульсные источники питания
- •Сравнение импульсных и линейных источников питания
- •3.4. Обратноходовой преобразователь напряжения
- •3.5. Автогенераторный преобразователь
- •3.6. Импульсный преобразователь 12-22 в
- •Основные параметры микросхемы кр1006ви1
- •Содержание отчета:
- •Контрольные вопросы
- •Лабораторная работа № 4. Исследование источников бесперебойного электропитания
- •4.1. Назначение и основные параметры источников бесперебойного электропитания
- •4.2. Принципы построения источников бесперебойного электропитания
- •4.3. Функциональные узлы источников бесперебойного электропитания
- •4.4. Разновидности промышленных источников бесперебойного электропитания
- •Модели ибп и сфера их применения
- •4.5. Устройство ибп класса off – line ( Back-ups 300i)
- •Технические характеристики моделей ибп фирмы арс
- •Порядок выполнения работы
- •Содержание отчета:
- •Контрольные вопросы
- •Лабораторная работа № 5. Исследование блока питания atx компьютера
- •5.1. Общие сведения
- •5.2. Основные технические характеристики
- •5.3. Конструкция блока питания
- •Разводка системного разъема питания компьютера
- •5.4. Структурная схема
- •5.5. Принципиальная схема
- •5.6. Автогенераторный вспомогательный источник
- •5.8. Силовой каскад
- •5.9. Вторичные цепи источника питания
- •5.10. Цепи защиты и цепи формирования служебных сигналов
- •5.11. Выполнение лабораторной работы Цель работы: изучить принцип действия импульсного блока питания конструкции атх и ознакомиться с его основными частями.
- •Порядок выполнения работы
- •Содержание отчета:
- •Контрольные вопросы
4.3. Функциональные узлы источников бесперебойного электропитания
Для рассмотрения принципов работы и построения функциональных узлов рассмотрим варианты блок-схем ИБП типа on-line by-pass, поскольку именно такие ИБП имеют наилучшие показатели надежности и живучести. Первый вариант (соответствует источнику типа NetPro производства IMV) приведен на рис. 4.6. Здесь так же, как и в предыдущих схемах, утолщенными линиями показано направление передачи энергии в основном режиме работы ИБП.
Установленные во входной и выходной цепях фильтры предназначены для подавления высокочастотных помех и импульсов перенапряжения длительностью в единицы микросекунд и менее. В некоторых случаях в состав этих фильтров входят ограничители напряжения, позволяющие выполнять ограничение амплитуды импульсных помех существенно большей длительности. Трансформатор Tр служит для обеспечения гальванической развязки напряжений, действующих в схеме, от напряжения сети. Коэффициент трансформации Tр равен единице, так как его выходное напряжение в режиме работы by-pass равно напряжению нагрузке. Цепь передачи энергии by-passвключается контактом S только при отсутствии выходного напряжения и при наличии напряжения сети, т. е. при отказе инвертора схемы ИБП. Выпрямитель, подключенный ко вторичной обмотке Tр, обычно выполняется в виде мостового выпрямителя с емкостным сглаживающим фильтром. Импульсный преобразователь ИПН служит для преобразования постоянного выходного напряжения выпрямителя в постоянное, являющееся входным для инвертора.
Рис. 4.6. Первый вариант блок-схемы ИБП типа on-line by-pass
С целью повышения кпд импульсного преобразователя постоянного напряжения (ИПН) его питание осуществляется от относительно высокого напряжения, равного выпрямленному напряжению сети. Однако применять аккумуляторы, которые осуществляют питание ИПН при снижении напряжения сети, на такое же высокое напряжение нерационально по экономическим соображениям. Поэтому на выходе аккумуляторов включен умножитель напряжения, в качестве которого используется ИСН повышающего типа. Зарядное устройство аккумуляторов работает от постоянного напряжения с выхода ИПН. Это отличает рассматриваемую блок-схему от структурной схемы рис. 4.3 и 4.4. Обычно в качестве зарядного устройства применяется ИСН понижающего типа.
Переменное напряжение снимается со вторичной обмотки трансформатора Tр. Для получения синусоидального переменного напряжения из прямоугольного служат выходные CLC фильтры, выделяющие первую гармонику напряжения 50 Гц. Регулирование величины выходного напряжения инвертора транзисторы осуществляют при помощи ШИМ-контроллера. Применение выcокочастотных методов преобразования позволяет увеличить эффективную амплитуду основной гармоники выходного напряжения и снизить уровень более высокочастотных гармоник.
Управление переключением режимов работы ИБП и работой функциональных узлов осуществляется при помощи микропроцессора. Для выдачи сигналов диагностики и дистанционного управления в ИБП имеется разъем стандартного интерфейса типа RS-232. На передней панели устанавливаются светодиодные устройства индикации режимов работы и диагностики. Кроме того, возникновение аварийных ситуаций и изменений режимов работы ИБП вызывает появление предусмотренных звуковых сигналов тревоги. В наиболее современных моделях ИБП имеется программный режим самотестирования, в течение которого нагрузка питается от аккумуляторов. При успешном выполнении программы самотестирования источник переходит в режим работы от сети. Обычно самотестирование выполняется автоматически при включении, а также через каждые две недели.
Второй вариант ИБП on-line by-pass (соответствует ИБП серии OMNI компании TRIPP LITE) показан на рис. 4.7. Его основное отличие от предыдущих (рис. 4.6) заключается в том, что при возникновении отклонений напряжения сети свыше допустимых норм происходит переключение отводов первичной обмотки W1, благодаря чему напряжение на входе инвертора приводится к заданным нормам. Здесь заряд аккумуляторов производится устройством, подключенным к одной из вторичных обмоток трансформатора Tр. Зарядное устройство, в отличие от предыдущей схемы ИБП, питается от переменного напряжения одной из вторичных обмоток трансформатора Tр и реализуется различными и довольно простыми схемотехническими решениями. Схема управления реализована на специализированных микроконтроллерах. В остальном функциональные узлы ИБП не отличаются от рассмотренных в предыдущей схеме рис. 4.6.
Рис. 4.7. Второй вариант блок-схемы ИБП типа on-line by-pass
Практически все выпрямители переменного напряжения, которые используются в ИБП, имеют на своем выходе конденсаторный сглаживающий фильтр. Ток, потребляемый подобным выпрямителем, имеет существенно нелинейную импульсную форму. Это приводит к появлению значительной по величине реактивной составляющей полной мощности потерь, потребляемой ИБП от сети переменного напряжения.
В этом случае, даже если к выходу выпрямителя подключена активная нагрузка, коэффициент мощности ИБП уменьшается до значений = 0,5..0,6, в то время как для реальной активной нагрузки он составляет 0,96..0,99.
Это вызывает дополнительную нагрузку на сеть, увеличивает энергопотребление ИБП и является его недостатком. С целью устранения этого недостатка разработан ряд международных стандартов, в которых оговаривается требование введения в источники электропитания с потребляемой мощностью свыше 300 ВА, имеющих на входе выпрямитель с конденсаторным фильтром, специальных устройств – корректоров мощности искажений (КМИ), предназначенных для увеличения коэффициента мощности . Функциональное назначение КМИ заключается в том, что импульсная форма тока, потребляемого ИБП, преобразуется в синусоидальную. Это определяет включение КМИ на входе ИБП. Вместе с этим если мощность, потребляемая аппаратурой вычислительной техники превышает 300 ВА, то на входе источников ее электропитания также необходимо устанавливать КМИ. Таким образом, КМИ является функциональным узлом, который должен использоваться во многих источниках электропитания, имеющих входной выпрямитель с конденсаторным сглаживающим фильтром.
