
- •Экзаменационные вопросы по нормальной физиологии для студентов 2 курса заочного отделения фармацевтического факультета
- •Строение и характеристика возбудимых тканей. Раздражимость. Возбудимость. Раздражение. Возбуждение. Проводимость.
- •Строение клеточной мембраны.
- •Классификация и характеристика раздражителей.
- •1) Адекватные, которые при минимальных энергетических затратах вызывают возбуждение ткани в естественных условиях существования организма;
- •2) Неадекватные, которые вызывают в тканях возбуждение при достаточной силе и продолжительном воздействии.
- •Законы раздражения.
- •Строение мембран. Трансмембранные ионные градиенты (Ходжкин-Хаксли).
- •Механизмы возникновения мембранного потенциала. Роль активного транспорта ионов в поддержании мембранного потенциала. Пассивный и сопряженный транспорт
- •Потенциал действия, его фазы, механизмы генерации.
- •Соотношение фаз возбудимости с фазами потенциала действия.
- •Ультраструктура скелетного мышечного волокна.
- •Механизмы сокращения и расслабления скелетных мышц.
- •Энергетика мышечного сокращения.
- •Одиночное мышечное сокращение, его фазы.
- •Суммация мышечных сокращений. Виды суммаций.
- •Тетанус, его виды.
- •Утомление мышц. Теории, объясняющие утомление.
- •Строение и функция гладких мышц.
- •Строение и классификация синапсов.
- •Механизмы проведения возбуждения в химических синапсах.
- •Строение и функции нейронов, их классификация.
- •Нейроглия. Методы исследования функций цнс.
- •Нервный центр. Свойства нервных центров (одностороннее проведение возбуждения, центральная задержка, суммация, трансформация, последействие, потенциация и т.Д.).
- •Центральное торможение (сеченовское, постсинаптическое, пресинаптическое, пессимальное). Механизмы центрального торможения. Физиологическое значение процесса торможения.
- •Принципы координационной деятельности цнс (общего конечного пути, облегчения, окклюзии, реципрокного торможения, доминанты).
- •Строение и функции спинного мозга. Важнейшие спинальные соматические и вегетативные центры.
- •Проводящие пути спинного мозга, их функции.
- •Строение и функции продолговатого мозга. Роль продолговатого мозга в регуляции соматических и вегетативных функций.
- •Строение и функции среднего мозга. Статические и статокинетические рефлексы, их значение.
- •Строение и функции мозжечка. Его роль в регуляции двигательных и вегетативных функций.
- •Строение и функции ретикулярной формации ствола мозга. Еѐ нисходящие и восходящие влияния.
- •Строение и функции таламуса. Значение в формировании болевых ощущений.
- •Функции гипоталамической области. Роль гипоталамуса в регуляции вегетативных, эндокринных функций, формировании мотиваций, эмоций, стресса.
- •Строение и роль подкорковых образований в организации движений.
- •Строение лимбической системы. Еѐ значение в регуляции вегетативных функций, возникновении эмоций, мотиваций, механизмах памяти.
- •34. Строение коры и ее роль в регуляции функций организма. Локализация
- •Особенности строения и функции вегетативной нервной системы. Симпатический, парасимпатический, метасимпатический отделы.
- •Влияние симпатического, парасимпатического и метасимпатического отделов на иннервируемые органы. Вегетативные рефлексы. Их значение в организации поведения.
- •Строение и функции анализаторов по и.П. Павлову.
- •Анализатор зрения. Значение.
- •Аккомодация глаза. Аномалии рефракции глаза
- •Анализатор слуха. Значение.
- •Анализатор вкуса, обоняния. Значение.
- •Вестибулярный анализатор. Значение.
- •Кровь как функциональная система.
- •Функции крови.
- •Эритроциты, их функция.
- •Гемоглобин, структура, свойства.
- •Гемолиз эритроцитов. Соэ.
- •Группы крови, переливание крови.
- •49. Резус-фактор при переливании крови и в акушерской практике.
- •50. Лейкоциты, виды, функция.
- •51. Лейкоцитарная формула.
- •52. Свѐртывание крови, фазы. Значение.
- •53. Механизмы регуляции кроветворения.
- •54. Общий план строения кровеносной системы. Основные функции кровообращения.
- •55. Строение сердца.
- •56. Клапанный аппарат сердца, его значение. Методы изучения.
- •57. Анализ цикла работы сердца.
- •58. Физиологические свойства сердечной мышцы.
- •59. Автоматия сердца. Строение проводящей системы сердца. Опыты Кулябко, Станниуса.
- •60. Полная и неполная блокада сердца. Последствия повреждения проводящей системы сердца
- •61. Экстрасистола, механизм ее возникновения.
- •62. Влияние парасимпатических (блуждающих) и симпатических нервов на деятельность сердца.
- •63. Систолитический и минутный выброс (объем) сердца. Сосудистые рефлексогенные зоны.
- •64. Рефлекторные механизмы регуляции работы сердца.
- •65. Гуморальная регуляция деятельности сердца.
- •66. Строение и функциональная классификация кровеносных сосудов.
- •67. Основные законы гемодинамики.
- •68. Кровяное давление в различных отделах системы кровообращения.
- •69. Артериальный и венный пульс. Происхождение.
Энергетика мышечного сокращения.
При работе мышц химическая энергия превращается в механическую, т.е. мышца является химическим двигателем, а не тепловым. Для процессов сокращения и расслабления мышц потребляется энергия АТФ. Расщепление АТФ с отсоединением одной молекулы фосфата и образованием аденозиндифосфата (АДФ) сопровождается выделением 10 ккал энергии на 1 моль: АТФ = АДФ + Ф + Эн. . Однако запасы АТФ в мышцах невелики (около 5 ммоль • л-1). Их хватает лишь на 1 - 2 с работы. Количество АТФ в мышцах не может изменяться, так как при отсутствии АТФ в мышцах развивается контрактура (не работает кальциевый насос и мышцы не в состоянии расслабляться), а при избытке - теряется эластичность.
Для продолжения работы требуется постоянное восполнение запасов АТФ. Восстановление АТФ происходит в анаэробных условиях - за счет распада креатиносфата (КрФ) и глюкозы (реакции гликолиза) - и в аэробных условиях - за счет реакций окисления жиров и углеводов. Энергосистемы, используемые в качестве источников энергии, обозначают как фосфагенная энергетическая система или система АТФ-КрФ, гликолитическая (или лактацидная) система и окислительная (или кислородная) система.
Быстрое восстановление АТФ происходит в тысячные доли секунды за счет распада КрФ. АДФ + КрФ = АТФ + Кр. Наибольшей эффективности этот путь энергообразования достигает к 5-6-й секунде работы, но затем запасы КрФ исчерпываются, так как их также немного (около 30 ммоль ■ л-1).
Медленное восстановление АТФ в анаэробных условиях обеспечивается энергией расщепления глюкозы (выделяемой из гликогена) - реакцией гликолиза с образованием в конечном итоге молочной кислоты (лактата) и восстановлением 3 молекул АТФ. Эта реакция достигает наибольшей мощности к концу 1-й минуты работы. Особое значение этот путь энергообразования имеет при высокой мощности работы, которая продолжается от 20 с до 1 - 2 мин (например, при беге на средние дистанции), а также при резком увеличении мощности более длительной и менее напряженной работы (спурты и финишные ускорения при беге на длинные дистанции) и при недостатке кислорода во время выполнения статической работы. Ограничение использования углеводов связано не с уменьшением запасов гликогена (глюкозы) в мышцах и в печени, а с угнетением реакции гликолиза избытком накопившейся в мышцах молочной кислоты.
Реакции окисления обеспечивают энергией работу мышц в условиях достаточного поступления в организм кислорода, т.е. при аэробной работе длительностью более 2-3 мин. Доставка кислорода достигает необходимого уровня после достаточного развертывания функций кислородтранспортных систем организма (дыхательной, сердечнососудистой систем и системы крови). Важным показателем мощности аэробных процессов является предельная величина поступления в организм кислорода за 1 мин - максимальное потребление кислорода (МПК). Эта величина зависит от индивидуальных возможностей каждого человека. У нетренированных лиц в 1 мин поступает к работающим мышцам около 2.5-3 л кислорода а у высококвалифицированных спортсменов - лыжников, пловцов, бегунов-стайеров и др. достигает 5-6л идаже7л в 1 мин.
При значительной мощности работы и огромной потребности при этом в кислороде основным субстратом окисления в большинстве спортивных упражнений являются углеводы, так как для их окисления требуется гораздо меньше кислорода, чем при окислении жиров. . При использовании одной молекулы глюкозы (С6Н12О6), полученной из гликогена, образуется 38 молекул АТФ, т.е. аэробный путь энергообразования обеспечивает при том же расходе углеводов во много раз больше продукции АТФ, чем анаэробный путь. Молочная кислота в этих реакциях не накапливается, а промежуточный продукт-пировиноградная кислота сразу окисляется до конечных продуктов - СО2 и Н20.
В качестве источника энергии жиры используются в состоянии двигательного покоя, при любой работе сравнительно невысокой мощности (требующей до 50% МПК) и при очень длительной работе на выносливость (требующей около 70-80% МПК). Среди всех источников энергии жиры обладают наибольшей энергетической емкостью: при расходовании 1 моля АТФ выделяется около 10 ккал энергии, 1 моля КрФ - около 10.5 ккал, 1 моля глюкозы при анаэробном расщеплении - около 50 ккал, а при окислении 1 моля глюкозы - около 700 ккал, при окислении 1 моля жиров - 2400 ккал (КоцЯ.М., 1982). Однако использование жиров при работе высокой мощности лимитируется трудностью доставки кислорода работающим тканям. Работа мышц сопровождается выделением тепла. Теплообразование происходит в момент сокращения мышц - начальное теплообразование (оно составляет всего одну тысячную всех энерготрат) и в период восстановления - запаздывающее теплообразование.
В обычных условиях при работе мышц тепловые потери составляют около 80% всех энерготрат. Для оценки эффективности механической работы мышцы используют вычисление коэффициента полезного действия (КПД). Величина КПД показывает, какая часть затрачиваемой энергии используется на выполнение механической работы мышцы. Ее вычисляют по формуле:
КПД= [А: (Е-е)] * 100%,
где: А - энергия, затраченная на полезную работу; Е - общий расход энергии; е - расход энергии в состоянии покоя за время, равное длительности работы.
У нетренированного человека КПД примерно 20%, у спортсмена - 30-35%. При ходьбе наибольший КПД отмечается при скорости 3.6-4.8. км • час-1, при педалировании на велоэргометре - при длительности цикла около 1 с. С увеличением мощности работы и включением "ненужных" мышц КПД уменьшается. При статической работе, поскольку А = 0, эффективность работы оценивается по длительности поддерживаемого напряжения мышц.