
- •Экзаменационные вопросы по нормальной физиологии для студентов 2 курса заочного отделения фармацевтического факультета
- •Строение и характеристика возбудимых тканей. Раздражимость. Возбудимость. Раздражение. Возбуждение. Проводимость.
- •Строение клеточной мембраны.
- •Классификация и характеристика раздражителей.
- •1) Адекватные, которые при минимальных энергетических затратах вызывают возбуждение ткани в естественных условиях существования организма;
- •2) Неадекватные, которые вызывают в тканях возбуждение при достаточной силе и продолжительном воздействии.
- •Законы раздражения.
- •Строение мембран. Трансмембранные ионные градиенты (Ходжкин-Хаксли).
- •Механизмы возникновения мембранного потенциала. Роль активного транспорта ионов в поддержании мембранного потенциала. Пассивный и сопряженный транспорт
- •Потенциал действия, его фазы, механизмы генерации.
- •Соотношение фаз возбудимости с фазами потенциала действия.
- •Ультраструктура скелетного мышечного волокна.
- •Механизмы сокращения и расслабления скелетных мышц.
- •Энергетика мышечного сокращения.
- •Одиночное мышечное сокращение, его фазы.
- •Суммация мышечных сокращений. Виды суммаций.
- •Тетанус, его виды.
- •Утомление мышц. Теории, объясняющие утомление.
- •Строение и функция гладких мышц.
- •Строение и классификация синапсов.
- •Механизмы проведения возбуждения в химических синапсах.
- •Строение и функции нейронов, их классификация.
- •Нейроглия. Методы исследования функций цнс.
- •Нервный центр. Свойства нервных центров (одностороннее проведение возбуждения, центральная задержка, суммация, трансформация, последействие, потенциация и т.Д.).
- •Центральное торможение (сеченовское, постсинаптическое, пресинаптическое, пессимальное). Механизмы центрального торможения. Физиологическое значение процесса торможения.
- •Принципы координационной деятельности цнс (общего конечного пути, облегчения, окклюзии, реципрокного торможения, доминанты).
- •Строение и функции спинного мозга. Важнейшие спинальные соматические и вегетативные центры.
- •Проводящие пути спинного мозга, их функции.
- •Строение и функции продолговатого мозга. Роль продолговатого мозга в регуляции соматических и вегетативных функций.
- •Строение и функции среднего мозга. Статические и статокинетические рефлексы, их значение.
- •Строение и функции мозжечка. Его роль в регуляции двигательных и вегетативных функций.
- •Строение и функции ретикулярной формации ствола мозга. Еѐ нисходящие и восходящие влияния.
- •Строение и функции таламуса. Значение в формировании болевых ощущений.
- •Функции гипоталамической области. Роль гипоталамуса в регуляции вегетативных, эндокринных функций, формировании мотиваций, эмоций, стресса.
- •Строение и роль подкорковых образований в организации движений.
- •Строение лимбической системы. Еѐ значение в регуляции вегетативных функций, возникновении эмоций, мотиваций, механизмах памяти.
- •34. Строение коры и ее роль в регуляции функций организма. Локализация
- •Особенности строения и функции вегетативной нервной системы. Симпатический, парасимпатический, метасимпатический отделы.
- •Влияние симпатического, парасимпатического и метасимпатического отделов на иннервируемые органы. Вегетативные рефлексы. Их значение в организации поведения.
- •Строение и функции анализаторов по и.П. Павлову.
- •Анализатор зрения. Значение.
- •Аккомодация глаза. Аномалии рефракции глаза
- •Анализатор слуха. Значение.
- •Анализатор вкуса, обоняния. Значение.
- •Вестибулярный анализатор. Значение.
- •Кровь как функциональная система.
- •Функции крови.
- •Эритроциты, их функция.
- •Гемоглобин, структура, свойства.
- •Гемолиз эритроцитов. Соэ.
- •Группы крови, переливание крови.
- •49. Резус-фактор при переливании крови и в акушерской практике.
- •50. Лейкоциты, виды, функция.
- •51. Лейкоцитарная формула.
- •52. Свѐртывание крови, фазы. Значение.
- •53. Механизмы регуляции кроветворения.
- •54. Общий план строения кровеносной системы. Основные функции кровообращения.
- •55. Строение сердца.
- •56. Клапанный аппарат сердца, его значение. Методы изучения.
- •57. Анализ цикла работы сердца.
- •58. Физиологические свойства сердечной мышцы.
- •59. Автоматия сердца. Строение проводящей системы сердца. Опыты Кулябко, Станниуса.
- •60. Полная и неполная блокада сердца. Последствия повреждения проводящей системы сердца
- •61. Экстрасистола, механизм ее возникновения.
- •62. Влияние парасимпатических (блуждающих) и симпатических нервов на деятельность сердца.
- •63. Систолитический и минутный выброс (объем) сердца. Сосудистые рефлексогенные зоны.
- •64. Рефлекторные механизмы регуляции работы сердца.
- •65. Гуморальная регуляция деятельности сердца.
- •66. Строение и функциональная классификация кровеносных сосудов.
- •67. Основные законы гемодинамики.
- •68. Кровяное давление в различных отделах системы кровообращения.
- •69. Артериальный и венный пульс. Происхождение.
Ультраструктура скелетного мышечного волокна.
По морфологическим признакам выделяют три группы мышц:
1) поперечно-полосатые мышцы (скелетные мышцы);
2) гладкие мышцы;
3) сердечную мышцу (или миокард).
Функции поперечно-полосатых мышц:
1) двигательная (динамическая и статическая);
2) обеспечения дыхания;
3) мимическая;
4) рецепторная;
5) депонирующая;
6) терморегуляторная. Функции гладких мышц:
1) поддержание давления в полых органах;
2) регуляция давления в кровеносных сосудах;
3) опорожнение полых органов и продвижение их содержимого.
Функция сердечной мышцы – насосная, обеспечение движения крови по сосудам.
Физиологические свойства скелетных мышц:
1) возбудимость (ниже, чем в нервном волокне, что объясняется низкой величиной мембранного потенциала);
2) низкая проводимость, порядка 10–13 м/с;
3) рефрактерность (занимает по времени больший отрезок, чем у нервного волокна);
4) лабильность;
5) сократимость (способность укорачиваться или развивать напряжение).
Различают два вида сокращения:
а) изотоническое сокращение (изменяется длина, тонус не меняется); б) изометрическое сокращение (изменяется тонус без изменения длины волокна). Различают одиночные и титанические сокращения;
6) эластичность.
Физиологические особенности гладких мышц.
Гладкие мышцы имеют те же физиологические свойства, что и скелетные мышцы, но имеют и свои особенности:
1) нестабильный мембранный потенциал, который поддерживает мышцы в состоянии постоянного частичного сокращения – тонуса;
2) самопроизвольную автоматическую активность;
3) сокращение в ответ на растяжение;
4) пластичность (уменьшение растяжения при увеличении растяжения);
5) высокую чувствительность к химическим веществам. Физиологической особенностью сердечной мышцы является ее автоматизм. Возбуждение возникает периодически под влиянием процессов, протекающих в самой мышце.
Механизмы сокращения и расслабления скелетных мышц.
Непосредственным источником энергии для мышечного сокращения является расщепление высокоэнергетического вещества АТФ. В мышце происходит также промежуточная реакция, вовлекающая 2-ое высокоэнергетическое вещество – креатинфосфат (КФ). Оно не может действовать как непосредственный источник энергии, поскольку его расщепление не оказывает влияние на сократительные белки мышцы. КФ обеспечивает энергией ресинтез АТФ. В свою очередь, энергия для ресинтеза КФ обеспечивается окислением.
Молекулярный механизм сокращения мышечного волокна состоит в том, что возникающий на мембране в области концевой пластинки потенциал действия распространяется по системе поперечных трубочек вглубь волокна, вызывает деполяризацию мембран цистерн саркоплазматического ретикулума и освобождение из них ионов кальция. Свободные ионы кальция в межфибриллярном пространстве запускают процесс сокращения. Совокупность процессов, обуславливающих распространение потенциала действия вглубь мышечного волокна, выход ионов кальция из саркоплазматического ретикулума, взаимодействие сократительных белков и укорочение мышечного волокна называют "электрическим сопряжением". Энергия гребкового движения одного мостика производит перемещение на 1% длины актиновой нити. Для дальнейшего скольжения сократительных белков друг относительно друга мостики между актином и миозином должны распадаться и вновь образовываться на следующем центре связывания Са2+-. Такой процесс происходит в результате активации в этот момент молекул миозина. Миозин приобретает свойства фермента АТФ-азы, который вызывает распад АТФ. Выделившаяся при распаде АТФ энергия приводит к разрушению имеющихся мостиков и образованию в присутствии Са2+новых мостиков на следующем участке актиновой нити. В результате повторения подобных процессов многократного образования и распада мостиков сокращается длина отдельных саркомеров и всего мышечного волокна в целом. Максимальная концентрация кальция в миофибрилле достигается уже через 3 мс после появления потенциала действия в поперечных трубочках, а максимальное напряжение мышечного волокна - через 20 мс.
Весь процесс от появления мышечного потенциала действия до сокращения мышечного волокна называется электромеханической связью (или электромеханическим сопряжением). В результате сокращения мышечного волокна актин и миозин более равномерно распределяются внутри саркомера, и исчезает видимая под микроскопом поперечная исчерченность мышцы.