
- •Экзаменационные вопросы по нормальной физиологии для студентов 2 курса заочного отделения фармацевтического факультета
- •Строение и характеристика возбудимых тканей. Раздражимость. Возбудимость. Раздражение. Возбуждение. Проводимость.
- •Строение клеточной мембраны.
- •Классификация и характеристика раздражителей.
- •1) Адекватные, которые при минимальных энергетических затратах вызывают возбуждение ткани в естественных условиях существования организма;
- •2) Неадекватные, которые вызывают в тканях возбуждение при достаточной силе и продолжительном воздействии.
- •Законы раздражения.
- •Строение мембран. Трансмембранные ионные градиенты (Ходжкин-Хаксли).
- •Механизмы возникновения мембранного потенциала. Роль активного транспорта ионов в поддержании мембранного потенциала. Пассивный и сопряженный транспорт
- •Потенциал действия, его фазы, механизмы генерации.
- •Соотношение фаз возбудимости с фазами потенциала действия.
- •Ультраструктура скелетного мышечного волокна.
- •Механизмы сокращения и расслабления скелетных мышц.
- •Энергетика мышечного сокращения.
- •Одиночное мышечное сокращение, его фазы.
- •Суммация мышечных сокращений. Виды суммаций.
- •Тетанус, его виды.
- •Утомление мышц. Теории, объясняющие утомление.
- •Строение и функция гладких мышц.
- •Строение и классификация синапсов.
- •Механизмы проведения возбуждения в химических синапсах.
- •Строение и функции нейронов, их классификация.
- •Нейроглия. Методы исследования функций цнс.
- •Нервный центр. Свойства нервных центров (одностороннее проведение возбуждения, центральная задержка, суммация, трансформация, последействие, потенциация и т.Д.).
- •Центральное торможение (сеченовское, постсинаптическое, пресинаптическое, пессимальное). Механизмы центрального торможения. Физиологическое значение процесса торможения.
- •Принципы координационной деятельности цнс (общего конечного пути, облегчения, окклюзии, реципрокного торможения, доминанты).
- •Строение и функции спинного мозга. Важнейшие спинальные соматические и вегетативные центры.
- •Проводящие пути спинного мозга, их функции.
- •Строение и функции продолговатого мозга. Роль продолговатого мозга в регуляции соматических и вегетативных функций.
- •Строение и функции среднего мозга. Статические и статокинетические рефлексы, их значение.
- •Строение и функции мозжечка. Его роль в регуляции двигательных и вегетативных функций.
- •Строение и функции ретикулярной формации ствола мозга. Еѐ нисходящие и восходящие влияния.
- •Строение и функции таламуса. Значение в формировании болевых ощущений.
- •Функции гипоталамической области. Роль гипоталамуса в регуляции вегетативных, эндокринных функций, формировании мотиваций, эмоций, стресса.
- •Строение и роль подкорковых образований в организации движений.
- •Строение лимбической системы. Еѐ значение в регуляции вегетативных функций, возникновении эмоций, мотиваций, механизмах памяти.
- •34. Строение коры и ее роль в регуляции функций организма. Локализация
- •Особенности строения и функции вегетативной нервной системы. Симпатический, парасимпатический, метасимпатический отделы.
- •Влияние симпатического, парасимпатического и метасимпатического отделов на иннервируемые органы. Вегетативные рефлексы. Их значение в организации поведения.
- •Строение и функции анализаторов по и.П. Павлову.
- •Анализатор зрения. Значение.
- •Аккомодация глаза. Аномалии рефракции глаза
- •Анализатор слуха. Значение.
- •Анализатор вкуса, обоняния. Значение.
- •Вестибулярный анализатор. Значение.
- •Кровь как функциональная система.
- •Функции крови.
- •Эритроциты, их функция.
- •Гемоглобин, структура, свойства.
- •Гемолиз эритроцитов. Соэ.
- •Группы крови, переливание крови.
- •49. Резус-фактор при переливании крови и в акушерской практике.
- •50. Лейкоциты, виды, функция.
- •51. Лейкоцитарная формула.
- •52. Свѐртывание крови, фазы. Значение.
- •53. Механизмы регуляции кроветворения.
- •54. Общий план строения кровеносной системы. Основные функции кровообращения.
- •55. Строение сердца.
- •56. Клапанный аппарат сердца, его значение. Методы изучения.
- •57. Анализ цикла работы сердца.
- •58. Физиологические свойства сердечной мышцы.
- •59. Автоматия сердца. Строение проводящей системы сердца. Опыты Кулябко, Станниуса.
- •60. Полная и неполная блокада сердца. Последствия повреждения проводящей системы сердца
- •61. Экстрасистола, механизм ее возникновения.
- •62. Влияние парасимпатических (блуждающих) и симпатических нервов на деятельность сердца.
- •63. Систолитический и минутный выброс (объем) сердца. Сосудистые рефлексогенные зоны.
- •64. Рефлекторные механизмы регуляции работы сердца.
- •65. Гуморальная регуляция деятельности сердца.
- •66. Строение и функциональная классификация кровеносных сосудов.
- •67. Основные законы гемодинамики.
- •68. Кровяное давление в различных отделах системы кровообращения.
- •69. Артериальный и венный пульс. Происхождение.
Гемоглобин, структура, свойства.
Гемоглобин относится к числу важнейших дыхательных белков, принимающих участие в переносе кислорода от легких к тканям. Он является основным компонентом эритроцитов крови, в каждом из них содержится примерно 280 млн молекул гемоглобина.
Гемоглобин является сложным белком, который относится к классу хромопротеинов и состоит из двух компонентов:
1) железосодержащего гема – 4 %;
2) белка глобина – 96 %.
Гем является комплексным соединением порфирина с железом. Это соединение довольно неустойчивое и легко превращается либо в гематин, либо в гемин. Строение гема идентично для гемоглобина всех видов животных. Отличия связаны со свойствами белкового компонента, который представлен двумя парами полипептидных цепей. Различают HbA, HbF, HbP формы гемоглобина.
В крови взрослого человека содержится до 95–98 % гемоглобина HbA. Его молекула включает в себя 2 ?– и 2 ?-полипептидные цепи. Фетальный гемоглобин в норме встречается только у новорожденных. Кроме нормальных типов гемоглобина, существуют и аномальные, которые вырабатываются под влиянием генных мутаций на уровне структурных и регуляторных генов.
Внутри эритроцита молекулы гемоглобина распространяются по-разному. Вблизи мембраны они лежат к ней перпендикулярно, что улучшает взаимодействие гемоглобина с кислородом. В центре клетки они лежат более хаотично. У мужчин в норме содержание гемоглобина примерно 130–160 г/л, а у женщин – 120–140 г/л.
Выделяют четыре формы гемоглобина:
1) оксигемоглобин;
2) метгемоглобин;
3) карбоксигемоглобин;
4) миоглобин.
Оксигемоглобин содержит двухвалентное железо и способен связывать кислород. Он переносит газ к тканям и органам. При воздействии окислителей (перекисей, нитритов и т. д.) происходит переход железа из двухвалентного в трехвалентное состояние, за счет чего образуется метгемоглобин, который не вступает в обратимую реакцию с кислородом и обеспечивает его транспорт. Карбоксигемоглобин образует соединение с угарным газом. Он обладает высоким сродством с окисью углерода, поэтому комплекс распадается медленно. Это обусловливает высокую ядовитость угарного газа. Миоглобин по структуре близок к гемоглобину и находится в мышцах, особенно в сердечной. Он связывает кислород, образуя депо, которое используется организмом при снижении кислородной емкости крови. За счет миоглобина происходит обеспечение кислородом работающих мышц.
Гемоглобин выполняет дыхательную и буферную функции. 1 моль гемоглобина способен связать 4 моля кислорода, а 1 г – 1,345 мл газа. Кислородная емкость крови – максимальное количество кислорода, которое может находиться в 100 мл крови. При выполнении дыхательной функции молекула гемоглобина изменяется в размерах. Соотношение между гемоглобином и оксигемоглобином зависит от степени парциального давления в крови. Буферная функция связана с регуляцией pH крови.
Гемолиз эритроцитов. Соэ.
Процесс разрушения оболочки эритроцитов и выход гемоглобина в плазму крови называется гемолизом.
При этом плазма окрашивается в красный цвет и становится прозрачной – “лаковая кровь”.
Различают несколько видов гемолиза.
Осмотический гемолиз может возникнуть в гипотонической среде.
Концентрация раствора NаСl, при которой начинается гемолиз, носит название осмотической резистентности эритроцитов.
Для здоровых людей границы минимальной и максимальной стойкости эритроцитов находятся в пределах от 0,4 до 0,34%.
Химический гемолиз может быть вызван хлороформом, эфиром, разрушающими белково-липидную оболочку эритроцитов.
Биологический гемолиз встречается при действии ядов змей, насекомых, микроорганизмов, при переливании несовместимой крови под влиянием иммунных гемолизинов.
Температурный гемолиз возникает при замораживании и размораживании крови в результате разрушения оболочки эритроцитов кристалликами льда.
Механический гемолиз происходит при сильных механических воздействиях на кровь, например встряхивании ампулы с кровью.