
- •Введение
- •Теоретическая часть
- •Эпоксидные смолы - полимерные матрицы для пкм
- •Отвердители для эпоксидных смол
- •Получение композиционных материалов Способы получение композиционных материалов
- •Метод rtm (Resin Transfer Moulding)
- •Метод вакуумной инфузии
- •Холодное прессование. Прессовка импрегнированием в вакууме или вне вакуума
- •Метод формования ручной выкладкой
- •Метод напыления рубленного ровинга
- •Метод пултрузии
- •Метод намотки
- •Метод препрегов
- •Экспериментальная часть Методика получения пкм методом вакуумной инфузии
- •Техника безопасности
- •Контрольные вопросы
- •Рекомендуемая литература
Отвердители для эпоксидных смол
Ярко выраженный полярный характер связи С — О в эпоксидном цикле в сочетании с его высокой напряженностью обусловливает способность эпоксидных смол раскрывать цикл под действием нуклеофильных и электрофильных реагентов (отвердителей, рис. 5) с образованием твердых сетчатых полимеров.
В качестве нуклеофильных отвердителей используют алифатические и ароматические первичные и вторичные ди- и полиамины, многоосновные кислоты и их ангидриды, многоатомные спирты, фенолы и их тиопроизводные, а также полиамиды, феноло-формальдегидные смолы резольного и новолачного типа, третичные амины и их соли; в качестве электрофильных отвердителей - кислоты Бренстеда и Льюиса, способные образовывать с эпоксидным циклом триалкилоксониевый ион. Процесс отверждения нуклеофильными агентами протекает по механизму реакции поликонденсации или анионной полимеризации, электрофильными - только по механизму катионной полимеризации.
Различают низко- и высокотемпературные процессы отверждения эпоксидных смол. Процесс низкотемпературного ("холодного") отверждения (~20°С) обычно проводят с использованием алифатических полиаминов или продуктов их конденсации с фенолом, формальдегидом и многоосновными карбоновыми кислотами; глубина отверждения обычно не превышает 65-70%; система достигает полной конверсии лишь при последующем прогревании при 50-100°С в течение 2-12 ч.
Рис.5. Классификация отвердителей для эпоксидных олигомеров
При высокотемпературном ("горячем") отверждении основные отвердители - ароматические полиамины (м-фенилендиамин, 4,4'-диаминодифенилметан, 4,4'-диаминодифенилсульфон), феноло- и мочевиноальдегидные смолы, ди- и поликарбоновые кислоты и их ангидриды (главным образом фталевый, метилтетрагидрофгалевый, гексагидрофталевый, малеиновый, эндометилентетрагидрофталевый (эндиковый) и их смеси); в качестве катализаторов иногда используют малолетучие третичные амины и их соли. Проводят горячее отверждение при 100-300°С в течение нескольких секунд (в тонких слоях) или нескольких часов.
Отверждение ЭС обычно проводят при небольших температурах (20-100°С) при введении 7-25 массовых частей первичных алифатических ди- или полиаминов на 100 массовых частей ЭС, или при повышенных температурах (80-150°С) при введении 14-26 массовых частей ароматических диаминов или (при 140-160°С) при введении 40-80 массовых частей ангидридов дикарбоновых кислот. Для ускорения процесса отверждения применяют соускорители - третичные амины, дициандиамид и катализаторы на основе комплексов BF3. Для сравнения в табл. 2 приведены показатели диановых ЭС, отвержденных алифатичеким диэтилентриамином (ДЭТА), ароматическим м-фенилендиамином (м-ФДА) и малеиновым ангидридом (МА).
Таблица 2. Характеристики отвержденных эпоксидных смол
различными отвердителями
Показатели |
Отвердители |
||
ДЭТА |
м-ФДА |
МА |
|
Плотность, кг/м3 |
1200-1250 |
1200-1250 |
1200-1250 |
Прочность при растяжении σр, МПа |
45-65 |
55-65 |
45-75 |
Прочность при изгибе σи, МПа |
80-110 |
100-115 |
100-150 |
Прочность при сжатии σсж, МПа |
150-230 |
200-230 |
120-150 |
Относительное удлинение, % |
1-2 |
3-4 |
2-3 |
Ударная вязкость, кДж/м2 |
5-8 |
7-15 |
15-18 |
Твердость НВ, МПа |
110-120 |
120-150 |
120-150 |
Водопоглощение, % |
0,05 |
0,03 |
0,03 |
Теплостойкость (по Мартенсу), °С |
60 |
80-90 |
100-120 |
Табличные данные показывают изменение свойств при применении различных типов отвердителей, что может быть связано с механизмами отверждения, при которых образуются функциональные группы.
Рассмотрим более подробно механизмы отверждения эпоксидных смол. Большинство применяемых аминных отвердителей содержат концевые реакционноспособные группы. Это приводит к образованию сшитой структуры между молекулами эпоксидных олигомеров. Например, концевая аминогруппа (первичный амин) взаимодействует с эпоксидной группой, принадлежащей молекуле смолы, следующим образом:
Когда образовавшаяся при этом вторичная аминогруппа соединяется с эпоксидной группой, принадлежащей второй молекуле смолы, то образуется межмолекулярная сшивка:
Отверждающие агенты, содержащие вторичные аминогруппы, реагируют со смолой аналогичным образом. Для проведения полной сшивки эпоксидной смолы соотношение между количеством атомов водорода в аминогруппах отвердителя (первичных и вторичных) и числом эпоксидных групп в смоле должно быть 1:1.
Химическая связь между атомами углерода и азота, возникающая при отверждении эпоксидной смолы аминами, устойчива к действию большинства неорганических кислот и щелочей. Однако, к воздействию органических кислот эта связь оказывается менее стабильной, чем межмолекулярные связи, образованные отвердителями других классов. Кроме того, электроизоляционные свойства аминоотвержденных эпоксидных смол уступают эпоксидным смолам с использованием других отверждающих агентов. Это связано с полярностью гидроксильных групп, образующихся при отверждении аминами.
Третичные амины, которые являются основаниями Льюиса, отверждают эпоксидную смолу по иному механизму, чем первичные и вторичные амины. Их добавляют в смолу в небольшом нестехиометрическом количестве, подбираемом эмпирически. Критерием при этом служит получение материала с лучшими свойствами. Отверждающий агент работает здесь как катализатор, инициируя процесс анионной полимеризации:
В результате гомополимеризации эпоксидной смолы образуется простой полиэфир. Простая эфирная связь (С-О-С) чрезвычайно стабильна к действию большинства кислот (как органических, так и неорганических) и щелочей. Отвержденная таким образом смола, кроме того, обладает большей теплостойкостью, чем отвержденная аминами.
В качестве кислотных отвердителей наибольшее применение нашли циклические ангидриды карбоновых кислот, такие как фталевый, малеиновый, тримеллитовый, а также диангидриды пиромеллитовый, бензофенонтетракарбоновой кислоты. Отверждение с помощью ангидридов карбоновых кислот проводят при 120–180°С. Часто для ускорения процесса отверждения, который идет чрезвычайно медленно, вводят небольшое количество ускорителя. Существуют ангидридные отвердители, которые реагируют со смолой при нагреве выше 200°С.
Механизм взаимодействия ангидридов кислот с эпоксидными смолами протекает с образованием сложных эфиров. Чтобы эта реакция произошла, требуется раскрытие ангидридного цикла. Небольшое количество протон-содержащих веществ (например, кислоты, спирты, фенолы и вода) или оснований Льюиса способствует его раскрытию. Образующиеся карбоксильные группы реагируют с эпоксидными группами по схеме:
Теоретически, одна ангидридная группа вступает в реакцию с одной эпоксидной группой.
Различия в свойствах ангидридов в большей степени проявляются при взаимодействии с эпоксидными группами, чем в случае катализа процесса гомополимеризации смолы с образованием простых полиэфирных связей. Для получения отвержденной смолы с оптимальными свойствами, что достигается увеличением степени завершенности реакции между ангидридными и эпоксидными группами, следует тщательно контролировать содержание гидроксильных групп в исходной смоле, а также проводить отверждение при повышенной температуре.
Образующаяся в результате отверждения сложноэфирная группа устойчива к действию органических и некоторых неорганических кислот, но разрушается щелочами. Полученные материалы обладают большей термостабильностью и лучшими электроизоляционными свойствами, чем при использовании аминных отвердителей.
Другим классом отвердителей являются фенол-формальдегидные (ФФС) и амино-альдегидные смолы (ААС), которые способны реагировать с гидроксильными группами ЭС, давая трехмерные продукты. Смеси ЭС и ФФС способны храниться месяцами и быстро отверждаться при температуре 150-200°С. Недостатком этих продуктов является выделение при реакции летучих продуктов конденсации (спирт и вода). Есть указания на то, что для получения высокотермостойких композиций содержание ФФС в композиции должно быть умеренным, а степень отверждения – максимальной. Сообщают о возможности применения в качестве отвердителей смеси ФФС с аминными и ангидридными отвердителями.
Оптимизация свойств эпоксидных связующих достигается путем выбора отверждающей системы. Отвержденные эпоксидные смолы имеют микрогетерогенную структуру глобулярного типа, формирование которой наблюдается уже в жидкой фазе на начальных стадиях отверждения; размер частиц зависит от состава неотвержденной эпоксидной смолы и условий отверждения, уменьшаясь с возрастанием температуры.
Выбор состава связующих на основе эпоксидных смол для композиционных материалов основан на том, что с уменьшением расстояния между узлами сетки растут температура стеклования, прочность при сжатии, химическая и термическая стойкость, но растет и хрупкость. Аналогично изменяются свойства отвержденных связующих при увеличении содержания ароматических циклов в молекуле эпоксидной смолы.
По прочностным показателям продукты отверждения эпоксидных смол превосходят применяемые в промышленности материалы на основе других синтетических смол. Так, прочность при растяжении может достигать 140 МПа, при сжатии - 40 МПа, при изгибе -220 МПа; модуль упругости ~ 50 ГПа, также отвержденные диановые смолы имеют высокую температуру стеклования 55-170ºС, низкое водопоглощение (0,01-0,1%), высокие диэлектрические показатели, но малое удлинение при растяжении (0,5-6%). Отвержденные смолы на основе галогенированного дифенилолпропана и ароматических диаминов обладают низкой горючестью. В композиции на основе эпоксидной смолы перед отверждением обычно вводят пластификаторы, не содержащие реакционноспособных групп, и различные наполнители - порошки, высокопрочные и высокомодульные сплошные и рубленые волокна из ткани, стекловолокна и других материалов.
Композиции холодного отверждения используют в качестве клеев, герметиков, заливочных компаундов, эпоксидных лаков, эмалей и др. защитных покрытий в случаях, когда по условиям эксплуатации нежелателен нагрев.
Композиции горячего отверждения применяют в качестве дорожных покрытий, клеев, электроизоляционных и некоторых лакокрасочных материалов, но наиболее эффективным является применение эпоксидных смол в качестве связующих при изготовлении крупногабаритных изделий контактным способом с использованием тканей и матов из стекло- или углеволокна в качестве армирующих наполнителей, а также при производстве премиксов и препрегов.
В табл. 3 представлены основные свойства ПКМ на основе эпоксидных связующих.
Таблица 3. Свойства ПКМ на основе эпоксидных связующих
Показатели |
Ненаполненные пластики |
Стекло-пластики |
Угле-пластики |
Плотность, кг/м3 |
1200-1250 |
1600-1900 |
1300-1500 |
Разрушающее напряжение, МПа, при |
|
|
|
растяжении |
50 |
300 |
450 |
изгибе |
80-110 |
2500 |
350-500 |
сжатии |
120-150 |
250-400 |
600-700 |
Модуль упругости при изгибе, ГПа |
4-8 |
50-70 |
130-170 |
Ударная вязкость, кДж/м2 |
5-8 |
180-200 |
130-150 |
Твердость по Бриннелю, МПа |
110-120 |
400-460 |
250-350 |
Теплостойкость по Мартенсу,оС |
80-120 |
140-200 |
140-200 |