
- •Раздел 1 Дистанционные методы в географических исследованиях
- •Тема 1.1 Сущность и развитие дистанционных методов
- •1.1.1 Основные понятия. Классификация аэрокосмических методов
- •1.1.2 Исторический очерк развития аэрокосмических методов
- •1.1.3 Применение аэрокосмических методов в географических науках
- •Тема 1.2 Дистанционные методы в геоэкологических исследованиях
- •1.2.1 Геоэкологическое применение различных видов съёмок.
- •Раздел 2. Физические основы, технические средства и технологии получения аэрокосмических снимков
- •Тема 2.1 Физические основы космоаэросъёмки
- •2.1.1 Электромагнитный спектр.
- •2.1.2 Солнечное излучение и его отражение объектами земной поверхности
- •2.1.3 Характеристика собственного излучения Земли.
- •2.1.4 Влияние атмосферы на регистрируемое излучение.
- •2.1.5 Искусственное излучение
- •Тема 2.2 Регистрация излучений
- •2.2.1 Методы регистрации электромагнитного излучения. Зрительная система человека.
- •2.2.2 Фотохимическая регистрация излучений
- •2.2.3 Электрическая регистрация излучений
- •2.2.4 Антенны
- •Тема 2.3 Съёмочная аппаратура
- •2.3.1 Классификация съемочной аппаратуры. Фотографические аппараты.
- •2.3.2 Оптико-механические и оптико-электронные сканеры
- •2.3.3 Радиолокаторы бокового и кругового обзора
- •Тема 2.4 Носители съёмочной аппаратуры
- •2.4.1 Виды носителей. Носители для воздушной съёмки
- •2.4.2 Носители для космической съёмки
- •2.4.3 Космический полёт и его особенности
- •Тема 2.5 Виды дистанционных съёмок
- •2.5.1 Классификация дистанционных съемок. Виды съемок в зависимости от используемых носителей.
- •2.5.2. Виды съемок в зависимости от используемой аппаратуры и спектрального диапазона
- •2.5.3. Наземные виды съемок
- •Тема 2.6 Классификация аэрокосмических снимков
- •2.6.1 Аэрокосмические снимки и их свойства
- •2.6.2 Классификации аэрокосмических снимков
- •2.6.3 Характеристика основных типов снимков
- •Раздел 3 Теоретические основы дешифрирования аэрокосмических снимков
- •Тема 3.1 Методологическая основа дешифрирования
- •3.1.1 Предмет и сущность дешифрирования.
- •3.1.2 Виды дешифрирования.
- •3.1.3 Психологические и физиологические основы визуального дешифрирования.
- •3.1.4 Признаки дешифрирования
- •Тема 3.2 Приборы и структура процесса дешифрирования
- •3.2.1 Приборы для дешифрирования
- •3.2.3 Оптимальные сроки аэрокосмической съемки и их влияние на дешифрируемость снимков
- •3.2.4 Логическая структура процесса дешифрирования
- •Раздел 4 Изобразительные и информационные свойства снимков
- •Тема 4.1 Изобразительные свойства снимков
- •4.1.1 Структура и рисунок аэрокосмического изображения
- •4.1.2 Закономерности генерализации аэрокосмического изображения
- •4.1.3 Способы преобразования аэрокосмического изображения
- •Раздел 5 Геометрические и стереоскопические свойства снимков
- •Тема 5.1 Геометрические свойства снимков
- •5.1.1 Масштаб снимков
- •5.1.2 Основные элементы планового снимка
- •5.1.3 Искажение снимков из-за наклона оптической оси фотоаппарата, рельефа местности и кривизны поверхности Земли
- •5.1.4 Технические факторы искажения снимков
- •5.1.5 Геометрические свойства сканерного снимка
- •5.1.5 Геометрические свойства радиолокационного снимка
- •Тема 5.2 Стереоскопические свойства снимков
- •5.2.1 Стереоскопическая пара снимков
- •5.2.2 Измерения по стереопарам снимков
- •Раздел 6 Радиометрические свойства и компьютерная обработка снимков
- •Тема 6.1 Цифровые снимки
- •6.1.1 Понятие о цифровом снимке
- •6.1.2 Геометрические и яркостные преобразования цифрового снимка.
- •6.1.3 Классификация объектов по снимкам
- •6.1.4 Составление карты по цифровым снимкам
- •Раздел 7 Мировой фонд космических снимков
- •Тема 7.1 Фонды снимков в различных диапазонах
- •7.1.1 Мировой фонд снимков
- •7.1.2 Фотографические снимки в видимом и инфракрасном диапазонах
- •7.1.3 Сканерные снимки
- •7.1.4 Снимки в тепловом инфракрасном диапазоне
- •7.1.5 Гиперспектральные снимки в оптическом диапазоне
- •7.1.6 Снимки в радиодиапазоне
- •Тема 7.2 Задачи, решаемые по снимкам
- •7.2.1 Задачи, решаемые по снимкам разного пространственного разрешения
- •Раздел 8 Технологии и методы визуального дешифрирования аэрокосмических снимков
- •Тема 8.1 Полевое дешифрирование
- •8.1.1 Материалы дистанционных съёмок
- •8.1.2 Технологическая схема процесса дешифрирования
- •8.1.3 Полевое наземное дешифрирование
- •8.1.4 Аэровизуальное дешифрирование.
- •8.1.5 Подспутниковые наблюдения.
- •Тема 8.2 Камеральное дешифрирование
- •8.2.1. Особенности камерального дешифрирования
- •8.2.1. Методы и способы камерального дешифрирования
- •8.2.2 Эталонирование и экстраполяция результатов дешифрирования.
Тема 3.2 Приборы и структура процесса дешифрирования
Приборы для дешифрирования. Индикационное дешифрирование. Оптимальные сроки аэрокосмической съемки и их влияние на дешифрируемость снимков. Логическая структура процесса дешифрирования: обнаружение, опознавание, интерпретация.
3.2.1 Приборы для дешифрирования
3.2.3 Оптимальные сроки аэрокосмической съемки и их влияние на дешифрируемость снимков.
3.2.4 Логическая структура процесса дешифрирования
3.2.1 Приборы для дешифрирования
Для повышения надёжности дешифрирования создаются специальные приборы. Их можно разделить на приборы для автоматизированного дешифрирования, приборы для инструментального дешифрирования и приборы для визуального дешифрирования.
К первой группе (для автоматизированного дешифрирования) относятся компьютеры с программным обеспечением, предназначенным для преобразования и дешифрирования цифровых снимков – яркостных и геометрических преобразований, цветокодирования, автоматического выделения и подчёркивания границ, автоматического распознавания объектов.
К основным приборам для инструментального дешифрирования относят денситометры и микрофотометры.
Денситометр – это прибор для измерения степени затемнения (оптической плотности) фотографических материалов.
Микрофотометр является видоизменением денситометра и предназначен для измерения оптической плотности на малых участках фотографических изображений. От денситометра отличается наличием микроскопической оптики, обычно 25-40-кратного увеличения.
Приборы для визуального дешифрирования позволяют повысить его надёжность, обеспечить оптимальные условия для работы исполнителя. К ним относятся увеличительные, стереоскопические приборы и приборы для преобразования изображений.
Увеличительные приборы позволяют компенсировать различия между разрешающей способностью глаза и снимка. К ним относятся лупы – монокулярные, бинокулярные и др.
Стереоскопические приборы предназначены для получения объёмного изображения. К основным из них относятся стереоскоп, параллаксометр, интерпретоскоп.
Стереоскоп – оптический бинокулярный прибор для просмотра «объёмных» фотографий. Принцип работы прибора основан на том, что если сфотографировать какую-либо сцену с двух точек, расположенных на некотором расстоянии друг от друга (примерное расстояние между глазами человека), а затем расположить получившуюся пару снимков (так называемая стереопара) так, чтобы один глаз видел только один снимок, а другой глаз – второй, то человек увидит «объёмное» изображение.
Рисунок – Линзово-зеркальный стереоскоп ЛЗС-1. Поле зрения 12 см, увеличение 1,4х
Параллаксометр – прибор для измерения превышений по разности продольных параллаксов при дешифрировании аэрофотоснимков. Может входить в конструкцию стереоскопа. Определение превышений осуществляется по формуле:
,
где h – разность продольных параллаксов, М – знаменатель масштаба, В – съёмочный базис. Дешифровщику значение базиса съёмки обычно неизвестно, поэтому можно измерять превышения только близко расположенных точек.
Интерпретоскоп – стационарный прибор для дешифрирования аэроснимков. Позволяет стереоскопически дешифрировать чёрно-белые и цветные аэроснимки одного или разных масштабов (до 1:7,5) в проходящем или отражённом свете, с двойным увеличением при общем обзоре и плавно изменяемым («панкратическим») до 15-кратного – при детальном изучении отдельных участков аэроснимков. Увеличение, яркость и оптический поворот изображения могут регулироваться сразу для стереопары аэроснимков и раздельно для каждого из них. В наблюдательной системе прибора имеется устройство (точечная марка и шкала) для измерений изображения объектов в плане и по высоте; точность отсчёта разности параллаксов 0,02 мм. Специальная каретка обеспечивает возможность обработки аэроснимков до формата 30 × 30 см без их перемещения по столу прибора (рисунок). Помимо основного назначения, интерпретоскоп применяют для рассматривания наземных и лабораторных стереофотографий и оптического переноса опознанных контуров и точек с одних фотосъёмочных материалов на другие. Часть приборов выпускается с двойными окулярами («совещательный вариант») и приспособлениями для простейших картографических работ.
Рисунок – Интерпретоскоп: 1 – наблюдательная система; 2 – каретка с объективами; 3 – станина со световым столом
Приборы для преобразования изображений получают всё меньшее распространение, так как активно заменяются компьютерами, преобразующими цифровые снимки. Такие приборы в основном предназначены для синтеза многозональных изображений (синтезирующие проекторы).