
- •Раздел 1 Дистанционные методы в географических исследованиях
- •Тема 1.1 Сущность и развитие дистанционных методов
- •1.1.1 Основные понятия. Классификация аэрокосмических методов
- •1.1.2 Исторический очерк развития аэрокосмических методов
- •1.1.3 Применение аэрокосмических методов в географических науках
- •Тема 1.2 Дистанционные методы в геоэкологических исследованиях
- •1.2.1 Геоэкологическое применение различных видов съёмок.
- •Раздел 2. Физические основы, технические средства и технологии получения аэрокосмических снимков
- •Тема 2.1 Физические основы космоаэросъёмки
- •2.1.1 Электромагнитный спектр.
- •2.1.2 Солнечное излучение и его отражение объектами земной поверхности
- •2.1.3 Характеристика собственного излучения Земли.
- •2.1.4 Влияние атмосферы на регистрируемое излучение.
- •2.1.5 Искусственное излучение
- •Тема 2.2 Регистрация излучений
- •2.2.1 Методы регистрации электромагнитного излучения. Зрительная система человека.
- •2.2.2 Фотохимическая регистрация излучений
- •2.2.3 Электрическая регистрация излучений
- •2.2.4 Антенны
- •Тема 2.3 Съёмочная аппаратура
- •2.3.1 Классификация съемочной аппаратуры. Фотографические аппараты.
- •2.3.2 Оптико-механические и оптико-электронные сканеры
- •2.3.3 Радиолокаторы бокового и кругового обзора
- •Тема 2.4 Носители съёмочной аппаратуры
- •2.4.1 Виды носителей. Носители для воздушной съёмки
- •2.4.2 Носители для космической съёмки
- •2.4.3 Космический полёт и его особенности
- •Тема 2.5 Виды дистанционных съёмок
- •2.5.1 Классификация дистанционных съемок. Виды съемок в зависимости от используемых носителей.
- •2.5.2. Виды съемок в зависимости от используемой аппаратуры и спектрального диапазона
- •2.5.3. Наземные виды съемок
- •Тема 2.6 Классификация аэрокосмических снимков
- •2.6.1 Аэрокосмические снимки и их свойства
- •2.6.2 Классификации аэрокосмических снимков
- •2.6.3 Характеристика основных типов снимков
- •Раздел 3 Теоретические основы дешифрирования аэрокосмических снимков
- •Тема 3.1 Методологическая основа дешифрирования
- •3.1.1 Предмет и сущность дешифрирования.
- •3.1.2 Виды дешифрирования.
- •3.1.3 Психологические и физиологические основы визуального дешифрирования.
- •3.1.4 Признаки дешифрирования
- •Тема 3.2 Приборы и структура процесса дешифрирования
- •3.2.1 Приборы для дешифрирования
- •3.2.3 Оптимальные сроки аэрокосмической съемки и их влияние на дешифрируемость снимков
- •3.2.4 Логическая структура процесса дешифрирования
- •Раздел 4 Изобразительные и информационные свойства снимков
- •Тема 4.1 Изобразительные свойства снимков
- •4.1.1 Структура и рисунок аэрокосмического изображения
- •4.1.2 Закономерности генерализации аэрокосмического изображения
- •4.1.3 Способы преобразования аэрокосмического изображения
- •Раздел 5 Геометрические и стереоскопические свойства снимков
- •Тема 5.1 Геометрические свойства снимков
- •5.1.1 Масштаб снимков
- •5.1.2 Основные элементы планового снимка
- •5.1.3 Искажение снимков из-за наклона оптической оси фотоаппарата, рельефа местности и кривизны поверхности Земли
- •5.1.4 Технические факторы искажения снимков
- •5.1.5 Геометрические свойства сканерного снимка
- •5.1.5 Геометрические свойства радиолокационного снимка
- •Тема 5.2 Стереоскопические свойства снимков
- •5.2.1 Стереоскопическая пара снимков
- •5.2.2 Измерения по стереопарам снимков
- •Раздел 6 Радиометрические свойства и компьютерная обработка снимков
- •Тема 6.1 Цифровые снимки
- •6.1.1 Понятие о цифровом снимке
- •6.1.2 Геометрические и яркостные преобразования цифрового снимка.
- •6.1.3 Классификация объектов по снимкам
- •6.1.4 Составление карты по цифровым снимкам
- •Раздел 7 Мировой фонд космических снимков
- •Тема 7.1 Фонды снимков в различных диапазонах
- •7.1.1 Мировой фонд снимков
- •7.1.2 Фотографические снимки в видимом и инфракрасном диапазонах
- •7.1.3 Сканерные снимки
- •7.1.4 Снимки в тепловом инфракрасном диапазоне
- •7.1.5 Гиперспектральные снимки в оптическом диапазоне
- •7.1.6 Снимки в радиодиапазоне
- •Тема 7.2 Задачи, решаемые по снимкам
- •7.2.1 Задачи, решаемые по снимкам разного пространственного разрешения
- •Раздел 8 Технологии и методы визуального дешифрирования аэрокосмических снимков
- •Тема 8.1 Полевое дешифрирование
- •8.1.1 Материалы дистанционных съёмок
- •8.1.2 Технологическая схема процесса дешифрирования
- •8.1.3 Полевое наземное дешифрирование
- •8.1.4 Аэровизуальное дешифрирование.
- •8.1.5 Подспутниковые наблюдения.
- •Тема 8.2 Камеральное дешифрирование
- •8.2.1. Особенности камерального дешифрирования
- •8.2.1. Методы и способы камерального дешифрирования
- •8.2.2 Эталонирование и экстраполяция результатов дешифрирования.
2.3.2 Оптико-механические и оптико-электронные сканеры
Сканерные системы дистанционного зондирования бывают двух видов. Первый – оптико-механических сканер с вращающимся зеркалом, второй, постепенно приходящий на смену первому, – оптико-электронный с системой множества неподвижных фоточувствительных элементов.
|
|
Рисунок – Схема съёмки оптико-механическим сканером |
Рисунок – Схема съёмки оптико-электронным сканером |
В оптико-механических сканерах качающееся зеркало сканера на борту носителя улавливает отраженный от Земли световой поток, а сигналы, соответствующие его интенсивности, передаются по радиоканалам на Землю, где на приемных станциях по результатам их регистрации формируется изображение. При этом каждый сигнал относится к площадке – элементу изображения (пикселу), для которого передается интегральная яркость. Колебание зеркала поперек маршрута съемки реализует строки изображения, а благодаря движению носителя происходит накопление строк и формируется полное изображение снимка, имеющее строчно-сетчатую поэлементную структуру.
Принцип работы оптико-механических сканеров заключается в следующем. Такой сканер содержит объектив с точечным фотоприемным устройством (фотоэлектронный умножитель, фотодиод, фоторезистор). Перед объективом качается (вращается) зеркало, отражение от которого попадает на фотоприемное устройство. При качании (вращении) зеркала и движении аппарата над Землей построчное считывается сигнал, пропорционального освещенности в того участка земной поверхности, на который в данный момент направлено зеркало. С помощью фотодиода регистрируется излучение в ультрафиолетовом, видимом и ближнем ИК-диапазоне, с помощью фоторезистора регистрируется излучение в тепловом ИК-диапазоне и оценивается температура поверхности Земли. Сканерная информация в цифровой форме передается со спутника по радио в реальном времени или в записи на бортовой накопитель; на Земле она обрабатывается на ЭВМ.
Рисунок – Схема функционирования оптико-механической сканирующей системы
В оптико-электронных сканерах в электронной камере, оснащенной мощной оптической системой для получения детального изображения, приемником излучения служат расположенные в линию неподвижные фоточувствительные элементы на приборах с зарядовой связью (ПЗС) − линейка ПЗС или несколько таких линеек. Большое число (до десятков тысяч) миниатюрных (размером в микрометры) фотоприёмников в линейке ПЗС обеспечивает высокое разрешение снимков. Длина линейки не более 1-3 см. Линейка реализует строку, а движение носителя – накопление строк и формирование снимка. На линейки через объектив фокусируется изображение земной поверхности, все элементы находятся в фокальной плоскости. Метод многоэлементной ПЗС-съемки, широко применяемый с середины 1980-х годов, обеспечил оперативное получение со спутников по радиоканалам изображений высокого разрешения, которое составляет от первых десятков метров (10–45 м) до десятков сантиметров (на спутнике Ikonos – 0,8 м, QuickBird – 0,6 м), то есть теперь эти снимки по разрешению лучше доступных потребителю фотографических снимков. Отсутствие подвижных элементов, характерных для механического сканирования, улучшает геометрические свойства снимков, которые в пределах каждой строки имеют центральную проекцию.
В объективах сканеров используется, как правило, зеркальная оптика. Линзовая оптика нежелательна, так как показатели преломления и поглощения света в линзах различны для различных длин волн, а сканер должен работать в широком диапазоне – от видимого участка до инфракрасного. Зеркальные объективы имеют вогнутое зеркало параболической формы, на внутреннюю поверхность которого нанесена тонкая отражающая металлическая пленка. Свет, отраженный основным зеркалом, попадает на площадку, где в фокальной плоскости объектива размещены фотоприемники.
Принцип работы ПЗС лёг в основу создаваемых в настоящее время цифровых камер, которые, как предполагается, в перспективе вытеснят фотографические, так как позволят достичь и превзойти последние по качеству и разрешению. В таких камерах вместо ПЗС-линейки используется ПЗС-матрица.