Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
KhIM_okr_sred_bakal_fizmat_ochn_16_09.doc
Скачиваний:
2
Добавлен:
01.04.2025
Размер:
3.32 Mб
Скачать

Возникновение основных компонентов атмосферы

Основные компоненты современной атмосферы земли - это азот, кислород, углекислый газ, аргон.

В составе газов, извергаемых современными вулканами нет кислорода возможно его не было и раньше. Молекулы воды в первичной атмосфере под действием энергии ультрафиолетового излучениямогт разлагаться:

H2O + hi ? H2 + 1/2O2.

Водород как легкий элемент улетучивался в космическое пространство, тогда как атомы кислорода соединялись с молекулами кислорода в озон:

O2 + O- ? O3.

С течением времени вследствие постоянного действия защитной озоновой оболочки мощные потоки солнечной энергии не могли достигнуть нижних слоев земной атмосферы и дальнейший синтез органических соединений стал невозможен. В результате реакции фотосинтеза

mCO2 + 11H2O + энергия ? Cm(H2O)n + 11O2

свободный кислород продолжал выделяться в атмосферу. Так началось накопление кислорода.

Присутствие высокоокисленных соединений железа в красных полосах железных руд докембрия свидетельствует о наличии свободного кислорода.

В качестве основы для расчетов прошлого состава атмосферы принимается распространенность захоронения органического углерода, как прошедшего фотосинтетический этап в круговороте, связанный с высвобождением кислорода. При убывании дегазации мантии в течение геологической истории, общая масса осадочных пород постепенно приближалась к современной. При этом 4/5 углерода захоронялось в карбонатных породах, а 1 /5 приходилась на органический углерод осадочных толщ. Немецкий геохимик М. Шидловский рассчитал рост содержания свободного кислорода в течение геологической истории Земли. При этом было установлено, что примерно 39% всего кислорода, выделившегося при фотосинтезе, оказалось связанным в оксид железа (III) (Fe2O3), 56% сосредоточилось в сульфатах (SO42-) и 5% осталось в свободном состоянии в атмосфере Земли.

В раннем докембрии практически весь освобожденный кислород быстро поглощался земной корой при окислении после того, как докембрийские океаны очистились от растворенного железа, свободный кислород стал накапливаться в гидросфере и затем в атмосфере.

Новый этап в истории биосферы характеризовался тем, что в атмосфере 2000... 1800 млн. лет назад отмечалось увеличение количества свободного кислорода. Поэтому окисление железа переместилось на поверхность древних континентов в область коры выветривания, что и привело к формированию мощных древних красноцветных толщ. Поступление двухвалентного железа в океан уменьшилось, и соответственно снизилось поглощение свободного кислорода морской средой. Азот давно обнаружен в газах вулканического происхождения. При нагревании этих пород, а также метеоритов, азот освобождается в форме молекул и в виде аммиака. В первичной мантии аммиак образовался из азота и водорода в результате реакций при нагреве в восстановительных условиях. В верхних слоях атмосферы под влиянием кислорода, освобождающегося при фотодиссоциации паров воды и других соединений, аммиак окисляется до молекулярного азота:

N2 +3H2 = 2NH3,

H2O = H2 + 1/2O2,

4NH3 + 3O2 ? 2N2 + 6H2O.

Большая часть атмосферного углерода как в прошлом, так и в настоящем, находилась в виде углекислого газа и значительно меньшая часть - в форме метана. В вулканических газах углерод также встречается преимущественно в форме углекислого газа и меньше - в форме угарного газа и метана.

2CO + O2 ? 2CO2,

CO + 3H2 = CH4 + H2O,

2CO = CO2 + C(графит),

CH4 + O2 ? CO2 + 2H2.

Вся деятельность фотосинтезирующих организмов стала направленной на интенсивное извлечение углекислого газа из атмосферы.

Геохимическая история углерода в биосфере начинается с его поступления в виде углекислого газа и угарного газа из глубинных горизонтов мантии в результате ее дегазации, выражаемой вулканическими процессами.

Поступившая из глубинных источников углекислота распределялась в биосфере, образуя в гидросфере сложную карбонатную систему. По мере выщелачивания ионов Са2+ и Mg2+ из первичной земной коры и поступления их в океан, углекислота отлагалась в виде карбонатных пород - известняков, доломитов:

Ca2+ + H2CO3 ? CaCO3 + 2H+,

Mg2+ + H2CO3 ? MgCO3 + 2H+.

Причем более древние известняки отличались повышенным содержанием магния. Другая часть углекислоты использовалась фотосинтезом с образованием органических веществ, испытывая в дальнейшем различные превращения, включая образование в захороненном состоянии рассеянной органики, затем углей разного типа, горючих сланцев и нефти.

Большая часть аргона земной атмосферы - радиоактивного происхождения. Это, в частности, подтверждается тем, что аргон земной атмосферы на 99,6% состоит из изотопа 40Ar, в то время как для обычного космического аргона характерно преобладание 36Ar. Радиогенный аргон возникал за счет распада 40К путем электронного захвата и выделялся в атмосферу при общей дегазации планеты:

40K + e ? 40Ar.

СТРОЕНИЕ И СОСТАВ АТМОСФЕРЫ

Строение атмосферы

Атмосфера характеризуется выраженной неоднородностью. Атмосфера состоит из нескольких слоев, между которыми расположены паузы. Все слои отличаются между собой температурой. В атмосфере протекают различные фотохимические реакции, которые для разных слоев в различной степени вносят вклад в нагревание атмосферы.

Нижний слой атмосферы - тропосфера - нагревается от поверхности Земли, которая в свою очередь нагревается за счет энергии Солнца. Нагрев воздуха за счет поглощения в десятки раз меньше. С высотой нагрев уменьшается, и это понижает температуру воздуха в среднем от 1 4 С на уровне моря до -55 С0 на верхней границе тропосферы. Этому способствует охлаждение и расширение поднимающегося воздуха. На верхней границе тропосферы радиационный нагрев воздуха Солнцем уравнивается с нагревом от Земли.

Выше тропосферы существует слой с постоянной низкой температурой -тропопауза. В тропиках толщина этого слоя 1 4- 1 6 км. В полярных областях тропопауза тоньше – 8- 1 0 км.

Выше тропопаузы воздух с высотой вначале медленно, а потом все быстрее нагревается примерно до -3 С на высоте около 50 км. Этот слой называется стратосферой. Стратосфера нагревается за счет поглощения ультрафиолетового излучения озоном (О3). Возможно протекание фотохимической реакции

О3 + hv ? О2 + О∙

Кроме того, в стратосфере могут протекать и некоторые другие фотохимические реакции, например:

N2 + hv ? N2 + + e-, О2 + hv ? О2+ + e-.

На высоте 50 км расположена стратопауза.

В стратосфере с увеличением высоты температура возрастает В мезосфере воздух становится более разряженным и температура убывает с высотой. На высоте 80 км находится мезопауза. В мезосфере протекают следующие фотохимичекие реакции:

О∙ + hv ? О+ + e-,

N2 + О2 ? N2+ + О2 +

О+ + О2 ? О∙ + О2+,

О+ + N2 ? NO+ + N

В термосфере происходит новый нагрев воздуха достигая 1500-2000 К, он также связан с поглощением ультрафиолетового излучения и сопровождается ионизацией атмосферы:

О∙ + hv ? О+ + e-,

N2 + hv ? 2N∙ ,

О+ + N2 ? NO+ + N∙ ,

+ + e- ? N∙ + О∙ ,

N2+ + O∙ ? NO+ + N∙

Наиболее удалена от поверхности Земли экзосфера (выше 1000 км). В ней еще обнаруживаются атмосферные газы до высоты приблизительно 2000 км, хотя верхняя граница атмосферы отсутствует. В экзосфере сила притяжения Земли уже недостаточны и происходит диссипация частиц. Диссипация - это процесс преодоления атомами и ионами поля притяженияЗемли.

Вследствие разряженности столкновения атомов становятся все реже, а величина свободного пробега значительно возрастает. Так, например, на высоте 1 00 км величина свободного пробега составляет 10 см, а на высоте 220 км достигает 870 м. Кинетическая энергия таких столкновений становится настолько большой, что температура повышается на сотни градусов. Если скорость атомов и ионов при соударении превышает 11 км/с, то атомы и ионы могут легко покинуть поле притяжения Земли.

По мере удаления от Земли средняя скорость частиц увеличивается, для межзвездного газа температура равна 10 000 °С.

Поскольку при реакциях выделяются ионы, верхнюю часть атмосферы (мезосферу, термосферу и экзосферу) называют также ионосферой.

Химические реакции в атмосфере

Реакции, протекающие в атмосфере, можно классифицировать следующим образом.

Реакции фотодиссоциации. Фотодиссоциация - это распад молекул с образованием свободных радикалов в результате поглощения фотона:

О2 + hv ? 2О∙.

Н2О + hv ? Н∙ + ОН∙

НО∙ + hv ? Н∙ + О∙

Реакции фотоионизации. Фотоионизация - это образование ионов из молекул и атомов под действием квантов света:

N2 + hv ? N2+ + e-,

О2 + hv ? О2+ + е-,

О∙ + hv ? О+ + е-,

NO + hv ? NO+ + е-.

Реакции между ионами. Реакции диссоциативной рекомбинации - это реакции иона с электронами с образованием нейтральных молекул, которые в разряженных условиях верхней атмосферы будут быстро диссоциировать:

N2 + + е- ? N2 ? N∙ + N∙

O2+ + е- ? O2 ? O∙ + O∙

NO+ + е- ? NO ? N∙ + O∙

Перенос заряда - это реакция молекулярного иона с нейтральной частицей, сопровождающаяся переносом электрона. Перенос заряда возможен, если энергия ионизации нейтральной молекулы меньше, чем энергия ионизации образующейся. К реакциям с переносом заряда относятся:

N2+ + O2 ? N2 + O2+,

O+ + O2 ? O∙ + O2+.

Реакции обмена - это реакции сопровождающиеся разрывом связей. Например, следующие реакции:

N2+ + O∙ ? NО+ + N∙

O+ + N2 ? NО+ + N ∙

За счет всех выше перечисленных реакций в верхних слоях (выше 50 км) атмосфера становится электропроводной, и создаются слои отражающие радиоволны. Это позволяет проводить дальнюю радиосвязь вокруг Земли.