
- •Анатолій Капіносов дидактичні матеріали алгебра
- •Передмова
- •Тематичне планування вивчення курсу алгебри у 8 класі (і семестр)
- •1.2. Поняття раціонального виразу
- •1.3. Тотожні перетворення цілих виразів
- •Відтворення і застосування теорії Самостійні роботи
- •Середній рівень
- •Достатній рівень
- •Високий рівень
- •Середній рівень
- •Достатній рівень
- •Високий рівень
- •Середній рівень
- •Достатній рівень
- •Високий рівень
- •Середній рівень
- •Достатній рівень
- •Високий рівень
- •Середній рівень
- •Достатній рівень
- •Високий рівень
- •Середній рівень
- •Достатній рівень
- •2.2. Основна властивість раціонального дробу
- •2.3. Основні тотожні перетворення раціональних дробів
- •3.2. Додавання і віднімання дробів з різними знаменниками
- •3.3. Додавання раціонального дробу і цілого раціонального виразу
- •4.2. Степінь дробу
- •4.3. Ділення дробів
- •6.2. Найпростіші дробові раціональні рівняння
- •Рівняння виду
- •Рівняння виду
- •Рівняння виду
- •Середній рівень
- •Достатній рівень
- •Високий рівень
- •7.2. Властивості степеня з цілим показником
- •7.3. Стандартний вигляд додатного числа
- •Відтворення і застосування теорії Самостійні роботи
- •Середній рівень
- •Достатній рівень
- •Високий рівень
- •Середній рівень
- •Достатній рівень
- •Високий рівень
- •Середній рівень
- •Достатній рівень
- •Високий рівень
- •Середній рівень
- •Достатній рівень
- •Високий рівень
- •Середній рівень
- •Достатній рівень
- •Високий рівень
- •Середній рівень
- •Достатній рівень
- •Високий рівень
- •Середній рівень
- •Достатній рівень
- •Високий рівень
- •Середній рівень
- •Достатній рівень
- •Високий рівень
- •Середній рівень
- •Достатній рівень
- •Високий рівень
- •8.2. Поняття ірраціонального числа
- •8.3. Поняття дійсного числа, числових проміжків
- •8.4. Вимірювання відрізків
- •Відтворення і застосування теорії Самостійні роботи
- •Середній рівень
- •Достатній рівень
- •Високий рівень
- •Середній рівень
- •Достатній рівень
- •Високий рівень
- •Середній рівень
- •Достатній рівень
- •Високий рівень
- •Середній рівень
- •Достатній рівень
- •Високий рівень
- •Середній рівень
- •Достатній рівень
- •Високий рівень
- •Середній рівень
- •Достатній рівень
- •Високий рівень
- •9.3. Арифметичний квадратний корінь з добутку і частки
- •9.4. Арифметичний квадратний корінь зі степеня
- •Достатній рівень
- •Високий рівень
- •Середній рівень
- •10.2. Внесення множника під знак кореня
- •10.3. Звільнення від ірраціональності у знаменнику дробу
- •10.4. Спрощення виразів, що містять квадратні корені
- •Відтворення і застосування теорії Самостійні роботи
- •Середній рівень
- •Достатній рівень
- •Високий рівень
- •Середній рівень
- •Достатній рівень
- •Високий рівень
- •Середній рівень
- •Достатній рівень
- •Високий рівень
- •Середній рівень
- •Достатній рівень
- •Високий рівень
- •Середній рівень
- •Достатній рівень
- •Високий рівень
- •Середній рівень
- •І. Раціональні вирази
- •46010, М. Тернопіль, вул. Поліська, 6а. Тел. 8-(0352)-43-15-15,43-10-21, 43-10-31.
Відтворення і застосування теорії Самостійні роботи
№ 99. Варіант 1.
Середній рівень
1. 1) Подати числа 39; –12;
;
–2,3 у вигляді відношення цілого числа
до натурального.
2) Подати число
у вигляді десяткового дробу й округлити
його до сотих.
3) Порівняти числа:
а) 0,1123… і 0,0948…; б) –2,034… і –1,993….
2. 1) Порівняти числа:
а) 0,(7) і 0,77; б) 0,445… і .
2) Зобразити на координатній прямій проміжок (–; 3].
3. 1) одиничного відрізка укладається у відрізку AB рівно двічі. Записати довжину відрізка AB звичайним і десятковим дробами.
2) Десятковим записом числа є нескінченний дріб, ціла частина якого число 15, а після коми підряд виписуються натуральні степені числа 2. Записати число з першими десятьма знаками. Вказати, яким раціональним чи ірраціональним є число , й округлити його до тисячних.
Достатній рівень
1. 1) Записати числа
в порядку зростання: 0,
22; 0,(2); 0,022;
.
2) Записати
число
у вигляді десяткового дробу та знайти
його десяткове наближення до тисячних:
а) з недостачею; б) з надлишком; в) за правилом округлення чисел.
3) Відрізок AB складається із трьох одиничних відрізків та двох десятих і чотирьох сотих частин одиничного відрізка. Записати довжину відрізка десятковим дробом і звичайним нескоротним дробом.
2. Записати три раціональні числа, розміщені між числами 2, 111 і 2,(1).
3. 1) Дано раціональне число a = 0,(6). Подати число a у вигляді нескоротного звичайного дробу та знайти числа 10a і 9a.
2) Дано ірраціональне число = 0,2525525552..., у якому цифри «2» відокремлені цифрами «5», кількість яких послідовно збільшується на 1. Записати ірраціональне число таке, щоб сума чисел і дорівнювала раціональному числу 7,(8).
Високий рівень
1. 1) Записати два раціональні числа й ірраціональне число, розміщені між числами 0,2 і 0,(2), задавши спосіб утворення десяткових знаків ірраціонального числа.
2) Відрізок AB складається із чотирьох десятих і шести сотих одиничного відрізка. Встановити, яка найбільша частина одиничного відрізка укладається ціле число разів у відрізку AB і скільки разів. Записати будь-які дві інші частини одиничного відрізка, що укладаються ціле число разів у відрізку AB.
3) Дано число a = 0,(32). Записати число a у вигляді звичайного нескоротного дробу та знайти 100a і 99a.
2. Встановити, які з наведених
раціональних чисел
можна записати у вигляді скінченних
десяткових дробів і перетворити їх у
десяткові дроби, звівши знаменники
дробів до степенів числа 10.
3. Довести, що добуток раціонального числа a, відмінного від нуля, і будь-якого ірраціонального числа є ірраціональним числом.
Вказівка. Довести на основі означення раціонального числа методом від супротивного.
№ 100. Варіант 2.
Середній рівень
1. 1) Подати числа 72; –18;
;
–7,2 у вигляді відношення цілого числа
до натурального.
2) Подати число у вигляді десяткового дробу й округлити його до сотих.
3) Порівняти числа:
а) 0,01122… і 0,02112…; б) –2,994… і –1,003….
2. 1) Порівняти числа:
а)
0,333 і 0,(3); б) 0,77… і
.
2) Зобразити на координатній прямій проміжок [5; +).
3. 1)
одиничного відрізка укладається у
відрізку AB рівно 5
разів. Записати довжину відрізка AB
звичайним і десятковим дробами.
2) Десятковим записом числа є нескінченний дріб, ціла частина якого число 15, а після коми підряд виписуються натуральні степені числа 5. Записати число з першими дев’ятьма десятковими знаками. Вказати, яким — раціональним чи ірраціональним — є число й округлити його до тисячних.