
- •Ответы к экзамену по генетике
- •1. Предмет генетики. Этапы развития. Теоретическое и практическое значение генетики.
- •3. Понятие о генетической информации. Роль ядра и цитоплазмы в явлениях наследственности.
- •4. Митоз и мейоз, их сходства и различия.
- •5. Структура и функции днк и рнк, доказательства генетической роли нуклеиновых кислот.
- •6. Современные представления о генетическом коде и его свойства. Мутации кода.
- •Вариации стандартного генетического кода:
- •7. Структурная и молекулярная организация хромосом прокариот и эукариот. Компоненты хроматина и уровни упаковки.
- •8. Цели и методы генетического анализа. Гибридологический метод анализа.
- •9. Моно-, ди, и полигибридное скрещивание. Закономерности «менделеевских» расщеплений.
- •10. Неаллельные взаимодействия: комплементарность и эпистаз.
- •11. Неаллельные взаимодействия: полимерия, плейотропия. Пенетрантность и экспрессивность генов.
- •Механизм
- •12. Хромосомное определение пола. Сцепленное и частично сцепленное с полом наследование признаков. Голандрический тип наследования.
- •13. Балансовая теория определения пола. Гинандроморфизм. Определение пола у дрозофил
- •14. Значение работ Моргана в изучении сцепленного наследования. Кроссинговер и его генетические и цитологические доказательства. Митотический кроссинговер.
- •15. Генетические карты, принцип их построения у прокариот и эукариот. Значение генетических карт в генетике и селекции.
- •16. Основные положения хромосомной теории наследственности по т. Моргану, их экспериментальное подтверждение.
- •17. Микроорганизмы как объекты генетических исследований. Организация генетического аппарата у бактерий и методы генанализа.
- •18. Генетическая рекомбинация при трансформации.
- •19. Трансдукция у бактерий и её значение для картирования генов.
- •20. Конъюгация у бактерий: половой фактор кишечной палочки. Генетическое картирование при конъюгации.
- •21. Пластидная наследственность. Наследование пестролистности у растений, устойчивости к антибиотикам у хламинодомонады.
- •22. Взаимодействие ядерных и внеядерных генов. Цитоплазматическая мужская стерильность у растений.
- •23. Плазмидное наследование. Свойства плазмид. Использование плазмид в генетических исследованиях.
- •24. Типы изменчивости, механизмы их возникновения, роль в эволюции и селекции.
- •25. Мутационная изменчивость. Основные положения мутационной терии Гуго-де-Фриза. Классификация мутаций.
- •26. Автополиплоиды, особенности мейоза.
- •27. Аллополиплоиды, особенности мейоза. Амфидиплоидия.
- •28. Анеуплоидия, ее использование в генетическом анализе. Особенности мейоза.
- •29. Гаплоидия и возможности ее практического использования. Нарушения мейоза у гаплоидов.
- •30. Внутрихромосомные перестройки и их значение в генетике, селекции и эволюции.
- •31. Межхромосомные перестройки и их значение.
- •32. Классификация генных мутаций и молекулярная природа их возникновения.
- •33. Спонтанный и индуцированный мутагенез и факторы их вызывающие.
- •34. Представление школы Моргана о строении и функциях гена. Функциональный и рекомбинантный критерии аллелизма.
- •35. Работы школы Серебровского по ступенчатому аллелизму. Функциональный тест на аллелизм (цис-транс-тест).
- •36. Исследование тонкой структуры гена на примере фага т4 (Бензер). Понятие о мутоне, реконе и цистроне.
- •37. Интрон – экзонная организация генов эукариот, сплайсинг. Структурная организация генома эукариот.
- •38. Регуляция активности генов на примере лактозного оперона (модель Жакоба и Моно).
- •39. Молекулярные механизмы репликации и ее регуляция. Понятие о репликоне.
- •Точки начала репликации репликации
- •40. Стабильность и непостоянство генома и дифференциальная активность генов в ходе индивидуального развития.
- •41. Тканеспецифическая активность генов. Функциональные изменения хромосом в онтогенезе (пуфы, ламповые щетки, гигантские хромосомы).
- •42. Задачи и методология генетической инженерии. Методы выделения и синтеза генов.
- •43. Понятие о векторах. Способы получения рекомбинантных молекул днк. Трансгенные организмы.
- •44. Значение генетической инженерии для решения задач биотехнологии, сельского хозяйства, медицины, экологии.
- •45. Понятие о виде, популяции. Методы изучения природных популяций.
- •46. Закон Харди-Вайнберга, возможности его применения. Факторы динамики генетического состава популяции.
- •3. Выполнение закона Харди–Вайнберга в природных популяциях. Практическое значение закона Харди–Вайнберга
- •47. Естественный отбор (движущий, стабилизирующий, дизруптивный) как направляющий фактор эволюции популяций. Формы искусственного отбора.
- •48. Предмет и задачи селекции. Понятие о породе, сорте, штамме, мутанте.
- •49. Закон гомологических рядов в наследственной изменчивости н. И. Вавилова и его значение для селекции, эволюции.
- •50. Системы скрещиваний в селекции растений и животных. Аутбридинг, инбридинг.
- •51. Отдаленная гибридизация. Стерильность отдаленных гибридов. Особенности межвидовой и межродовой гибридизации. Работы Мичурина, Карпеченко.
- •52. Гетерозис и его генетическая природа. Простые, двойные межлинейные гибриды.
- •53. Методы отбора в селекции. Отбор по фенотипу и генотипу и влияние условий внешней среды на эффективность отбора.
- •54. Сущность адаптивной селекции и ее значение в сельском хозяйстве.
- •55. Человек как объект генетических исследований. Методы изучения генетики человека.
- •56. Проблемы медицинской генетики. Врожденные и наследственные болезни. Генотерапия.
- •57. Социальные и этические проблемы в генетике человека. Роль генетических и социальных факторов в эволюции человека.
- •58. Достижения и перспективы селекции растений в рб и рф.
42. Задачи и методология генетической инженерии. Методы выделения и синтеза генов.
Генная, или генетическая инженерия (genetic engineering, genetic modification technology) – это совокупность биотехнологических методов, позволяющих создавать синтетические системы на молекулярно- биологическом уровне.
Генная инженерия дает возможность конструировать функционально активные структуры в форме рекомбинантных нуклеиновых кислот: рекДНК (recDNA) или рекРНК (recRNA) – вне биологических систем (in vitro), а затем вводить их в клетки.
Возможность прямой (горизонтальной) передачи генетической информации от одного биологического вида другому была доказана в опытах Ф. Гриффита с пневмококками (1928).
Однако генная инженерия как технология рекДНК возникла в 1972 г., когда в лаборатории П. Берга (Станфордский ун-т, США) была получена первая рекомбинантная (гибридная) ДНК (рекДНК), в которой были соединены фрагменты ДНК фага лямбда и кишечной палочки с кольцевой ДНК обезьяньего вируса SV40.
С начала 1980-х гг. достижения генной инженерии начинают использоваться на практике.
С 1996 г. генетически модифицированные растения (genetic modification plants) начинают использоваться в сельском хозяйстве.
Задачи генной инженерии
Основные направления генетической модификации организмов:
– придание устойчивости к ядохимикатам (например, к определенным гербицидам);
– придание устойчивости к вредителям и болезням (например, Bt-модификация);
– повышение продуктивности (например, быстрый рост трансгенного лосося);
– придание особых качеств (например, изменение химического состава).
Методы генной инженерии
Методы генной инженерии основаны на получении фрагментов исходной ДНК и их модификации.
Для получения исходных фрагментов ДНК разных организмов используется несколько способов:
– Получение фрагментов ДНК из природного материала путем разрезания исходной ДНК с помощью специфических нуклеаз (рестриктаз).
– Прямой химический синтез ДНК, например, для создания зондов (см. ниже).
– Синтез комплементарной ДНК (кДНК) на матрице мРНК с использованием фермента обратной транскриптазы (ревертазы).
Определение нуклеотидного состава фрагментов ДНК по классической методике производится с помощью радиоактивных зондов – молекул ДНК с заранее известной структурой, в состав которых входят радиоактивные изотопы фосфора или водорода. Если структура выделенного фрагмента хотя бы частично комплементарна структуре зонда, то происходит ДНК-ДНК-гибридизация, и на микрофотографии препарата появляется засветка от радиоактивного изотопа. В настоящее время для определения нуклеотидных последовательностей ДНК широко используют флуоресцентные метки.
Выделенные участки ДНК встраивают в векторы переноса ДНК. Векторы ДНК – это небольшие молекулы ДНК, способные проникать в другие клетки и реплицироваться в них.
В состав вектора ДНК входит не менее трех групп генов:
1. Целевые гены, которые интересуют экспериментатора.
2. Гены, отвечающие за репликацию вектора, его интеграцию в ДНК клетки-хозяина и экспрессию требуемых генов.
3. Гены-маркеры (селективные, репортерные гены), по деятельности которых можно судить об успешности трансформации (например, гены устойчивости к антибиотикам или гены, отвечающие за синтез белков, светящихся в ультрафиолетовом свете).
Для внедрения векторов в прокариотические или эукариотические клетки используют различные способы:
1. Биотрансформация. Используются векторы, способные сами проникать в клетки. Частным случаем биотрансформации является агробактериальная трансформация.
2. Микроинъекции. Используются, если клетки, подлежащие трансформации, достаточно крупные (например, икринки, пыльцевые трубки).
3. Биобаллистика (биолистика). Векторы «вбивают» в клетки с помощью специальных «пушек».
В качестве векторов часто используют плазмиды (кольцевые молекулы ДНК прокариотических клеток), а также ДНК вирусов. У эукариот в качестве векторов используют мобильные генетические элементы – участки хромосом, способные образовывать множество копий и встраиваться в другие хромосомы. В составе одного вектора можно комбинировать различные фрагменты ДНК (различные гены). Вновь образованные фрагменты ДНК называют рекомбинантными.
Векторы переноса ДНК вместе с внедренными фрагментами ДНК различными способами вводят в прокариотические или эукариотические клетки и получают трансгенные клетки. В ходе размножения трансгенных клеток происходит клонирование требуемых фрагментов ДНК, в частности, отдельных генов. Клонированные гены эукариот подвергают различным модификациям (например, добавляют перед ними определенные промоторы) и внедряют в клетки-продуценты. Основная проблема состоит в том, чтобы чужеродные гены экспрессировались постоянно, то есть должен происходить синтез необходимых веществ без ущерба для клетки–хозяина.
Практические достижения современной генной инженерии заключаются в следующем:
– Созданы банки генов, или клонотеки, представляющие собой коллекции клонов бактерий. Каждый из этих клонов содержит фрагменты ДНК определенного организма (дрозофилы, человека и других).
– На основе трансформированных штаммов вирусов, бактерий и дрожжей осуществляется промышленное производство инсулина, интерферона, гормональных препаратов. На стадии испытаний находится производство белков, позволяющих сохранить свертываемость крови при гемофилии, и других лекарственных препаратов.
– Созданы трансгенные высшие организмы (многие растения, некоторые рыбы и млекопитающие) в клетках которых успешно функционируют гены совершенно других организмов. Широко известны генетически модифицированные растения (ГМР), устойчивые к высоких дозам определенных гербицидов, а также Bt-модифицированные растения, устойчивые к вредителям.
– Разработаны методы клонирования строго определенных участков ДНК, например, метод полимеразной цепной реакции (ПЦР). ПЦР-технологии применяются для идентификации определенных нуклеотидных последовательностей, что используется при ранней диагностике некоторых заболеваний, например, для выявления носителей ВИЧ-инфекции.
Генная инженерия относится к технологиям высокого уровня (high technology). В противоположность технологиям низкого уровня, высокие биотехнологии характеризуются высокой наукоемкостью, т.е. использованием рабочих систем, полученных с использованием самых современных методов экологии, генетики, микробиологии, цитологии, молекулярной биологии. Материалы, применяемые в высоких биотехнологиях, часто нуждаются в специальной подготовке. Для реализации таких технологий требуется специальное технологическое оборудование, обслуживаемое квалифицированными специалистами. Из-за нехватки таких специалистов расширение высокотехнологичного производства сопровождается его автоматизацией и компьютеризацией.
ГМ-технологии (GM-technology) используются как в рамках обычного сельскохозяйственного производства, так и в других областях человеческой деятельности: в здравоохранении, в промышленности, в различных областях науки, при планировании и проведении природоохранных мероприятий.
Любые технологии высокого уровня могут быть опасными для человека и окружающей его среды, поскольку последствия их применения непредсказуемы. Поэтому технологии генной инженерии (GM-technology) вызывают у населения вполне понятное недоверие.