- •Ответы к экзамену по генетике
- •1. Предмет генетики. Этапы развития. Теоретическое и практическое значение генетики.
- •3. Понятие о генетической информации. Роль ядра и цитоплазмы в явлениях наследственности.
- •4. Митоз и мейоз, их сходства и различия.
- •5. Структура и функции днк и рнк, доказательства генетической роли нуклеиновых кислот.
- •6. Современные представления о генетическом коде и его свойства. Мутации кода.
- •Вариации стандартного генетического кода:
- •7. Структурная и молекулярная организация хромосом прокариот и эукариот. Компоненты хроматина и уровни упаковки.
- •8. Цели и методы генетического анализа. Гибридологический метод анализа.
- •9. Моно-, ди, и полигибридное скрещивание. Закономерности «менделеевских» расщеплений.
- •10. Неаллельные взаимодействия: комплементарность и эпистаз.
- •11. Неаллельные взаимодействия: полимерия, плейотропия. Пенетрантность и экспрессивность генов.
- •Механизм
- •12. Хромосомное определение пола. Сцепленное и частично сцепленное с полом наследование признаков. Голандрический тип наследования.
- •13. Балансовая теория определения пола. Гинандроморфизм. Определение пола у дрозофил
- •14. Значение работ Моргана в изучении сцепленного наследования. Кроссинговер и его генетические и цитологические доказательства. Митотический кроссинговер.
- •15. Генетические карты, принцип их построения у прокариот и эукариот. Значение генетических карт в генетике и селекции.
- •16. Основные положения хромосомной теории наследственности по т. Моргану, их экспериментальное подтверждение.
- •17. Микроорганизмы как объекты генетических исследований. Организация генетического аппарата у бактерий и методы генанализа.
- •18. Генетическая рекомбинация при трансформации.
- •19. Трансдукция у бактерий и её значение для картирования генов.
- •20. Конъюгация у бактерий: половой фактор кишечной палочки. Генетическое картирование при конъюгации.
- •21. Пластидная наследственность. Наследование пестролистности у растений, устойчивости к антибиотикам у хламинодомонады.
- •22. Взаимодействие ядерных и внеядерных генов. Цитоплазматическая мужская стерильность у растений.
- •23. Плазмидное наследование. Свойства плазмид. Использование плазмид в генетических исследованиях.
- •24. Типы изменчивости, механизмы их возникновения, роль в эволюции и селекции.
- •25. Мутационная изменчивость. Основные положения мутационной терии Гуго-де-Фриза. Классификация мутаций.
- •26. Автополиплоиды, особенности мейоза.
- •27. Аллополиплоиды, особенности мейоза. Амфидиплоидия.
- •28. Анеуплоидия, ее использование в генетическом анализе. Особенности мейоза.
- •29. Гаплоидия и возможности ее практического использования. Нарушения мейоза у гаплоидов.
- •30. Внутрихромосомные перестройки и их значение в генетике, селекции и эволюции.
- •31. Межхромосомные перестройки и их значение.
- •32. Классификация генных мутаций и молекулярная природа их возникновения.
- •33. Спонтанный и индуцированный мутагенез и факторы их вызывающие.
- •34. Представление школы Моргана о строении и функциях гена. Функциональный и рекомбинантный критерии аллелизма.
- •35. Работы школы Серебровского по ступенчатому аллелизму. Функциональный тест на аллелизм (цис-транс-тест).
- •36. Исследование тонкой структуры гена на примере фага т4 (Бензер). Понятие о мутоне, реконе и цистроне.
- •37. Интрон – экзонная организация генов эукариот, сплайсинг. Структурная организация генома эукариот.
- •38. Регуляция активности генов на примере лактозного оперона (модель Жакоба и Моно).
- •39. Молекулярные механизмы репликации и ее регуляция. Понятие о репликоне.
- •Точки начала репликации репликации
- •40. Стабильность и непостоянство генома и дифференциальная активность генов в ходе индивидуального развития.
- •41. Тканеспецифическая активность генов. Функциональные изменения хромосом в онтогенезе (пуфы, ламповые щетки, гигантские хромосомы).
- •42. Задачи и методология генетической инженерии. Методы выделения и синтеза генов.
- •43. Понятие о векторах. Способы получения рекомбинантных молекул днк. Трансгенные организмы.
- •44. Значение генетической инженерии для решения задач биотехнологии, сельского хозяйства, медицины, экологии.
- •45. Понятие о виде, популяции. Методы изучения природных популяций.
- •46. Закон Харди-Вайнберга, возможности его применения. Факторы динамики генетического состава популяции.
- •3. Выполнение закона Харди–Вайнберга в природных популяциях. Практическое значение закона Харди–Вайнберга
- •47. Естественный отбор (движущий, стабилизирующий, дизруптивный) как направляющий фактор эволюции популяций. Формы искусственного отбора.
- •48. Предмет и задачи селекции. Понятие о породе, сорте, штамме, мутанте.
- •49. Закон гомологических рядов в наследственной изменчивости н. И. Вавилова и его значение для селекции, эволюции.
- •50. Системы скрещиваний в селекции растений и животных. Аутбридинг, инбридинг.
- •51. Отдаленная гибридизация. Стерильность отдаленных гибридов. Особенности межвидовой и межродовой гибридизации. Работы Мичурина, Карпеченко.
- •52. Гетерозис и его генетическая природа. Простые, двойные межлинейные гибриды.
- •53. Методы отбора в селекции. Отбор по фенотипу и генотипу и влияние условий внешней среды на эффективность отбора.
- •54. Сущность адаптивной селекции и ее значение в сельском хозяйстве.
- •55. Человек как объект генетических исследований. Методы изучения генетики человека.
- •56. Проблемы медицинской генетики. Врожденные и наследственные болезни. Генотерапия.
- •57. Социальные и этические проблемы в генетике человека. Роль генетических и социальных факторов в эволюции человека.
- •58. Достижения и перспективы селекции растений в рб и рф.
26. Автополиплоиды, особенности мейоза.
А́втополиплоиди́я — наследственное изменение, кратное увеличение числа наборов хромосом в клетках организма одного и того же биологического вида. На основе искусственной автополиплоидии синтезированы новые формы и сорта ржи, гречихи, сахарной свёклы и других растений.
Образование автополиплоидов. В процессе неудачного мейоза диплоидной клетки образуются диплоидные гаметы, которые сливаются с образованием тетраплоидной зиготы.
Автополиплоидия представляет собой многократное повторение в клетке одного и того хромосомного набора (генома). Этот тип полиплоидии характерен для низших эукариот и покрытосеменных растений. У многоклеточных животных автополиплоидия встречается крайне редко: у дождевых червей, некоторых насекомых. Экспериментально получены автополиплоиды у некоторых земноводных. Автополиплоиды у человека и других высших позвоночных погибают на ранних стадиях внутриутробного развития.
Существуют сбалансированные и несбалансированные автополиплоиды. Сбалансированными полиплоидами называются полиплоиды с чётным числом хромосомных наборов, а несбалансированными – полиплоиды с нечетным числом хромосомных наборов, например:
-
несбалансированные полиплоиды
сбалансированные полиплоиды
гаплоиды
1 x
диплоиды
2 x
триплоиды
3 x
тетраплоиды
4 x
пентаплоиды
5 x
гексаплоиды
6 x
гектаплоиды
7 x
октоплоиды
8 x
эннеаплоиды
9 x
декаплоиды
10 x
Автополиплоидия часто сопровождается увеличением размеров клеток, пыльцевых зерен и общих размеров организмов. Например, триплоидная осина (3х = 57) достигает гигантских размеров, долговечна, её древесина устойчива к гниению. Среди культурных растений широко распространены как триплоиды (земляника, яблоня (3х = 51), арбузы, бананы, чай, сахарная свекла), так и тетраплоиды (рожь, клевер, виноград). Эти растения отличаются повышенной сахаристостью, повышенным содержанием витаминов. В природных условиях автополиплоидные растения обычно встречаются в экстремальных условиях (в высоких широтах, в высокогорьях); более того, здесь они могут вытеснять нормальные диплоидные формы.
Положительные эффекты полиплоидии связаны с увеличением числа копий одного и того же гена в клетках, и, соответственно, в увеличении дозы (концентрации) ферментов. Однако в ряде случаев полиплоидия приводит к угнетению физиологических процессов, особенно при очень высоких уровнях плоидности. Например, 84-хромосомная пшеница менее продуктивна, чем 42-хромосомная.
Мейоз у автополиплоидов.
Автополиплоидные клетки нормально делятся путем митоза, поскольку митоз нормально протекает при любом числе хромосом. Однако все автополиплоиды характеризуются различными нарушениями в мейозе, что приводит к пониженной фертильности (пониженной плодовитости) или стерильности (полному бесплодию). У диплоидных организмов в профазе мейоза I образуются биваленты, а у полиплоидов – структуры, состоящие из множества хромосом – поливаленты, или мультиваленты.
К поливалентам относятся триваленты (состоят из трех хромосом), квадриваленты (из четырех хромосом) и т.д. При этом в одной точке могут конъюгировать только две хромосомы. При наличии унивалентов первое деление мейоза может быть эквационным, то есть к полюсам могут расходиться однохроматидные хромосомы. В этих случаях правильная сегрегация хромосом (в соотношении 1:1, 2:2, 3:3 и т.д.) нарушается, а плодовитость таких организмов сильно снижена.
У несбалансированных автополиплоидов хромосомы представлены нечетным числом гомологов. Например, у триплоидов каждая хромосома представлена тремя гомологами. Тогда в профазе мейоза I наряду с бивалентами образуются структуры, состоящие из одной хромосомы (униваленты) или из трех хромосом (триваленты). Вероятность того, что у одного полюса окажутся два полных хромосомных набора 2n, а у другого полюса – один полный хромосомный набор n, очень мала. Поэтому несбалансированные автополиплоиды практически бесплодны (стерильны).
У сбалансированных автополиплоидов хромосомы представлены четным числом гомологов. Например, у тетраплоидов каждая хромосома представлена четырьмя гомологами. Тогда в профазе мейоза I наряду с бивалентами, унивалентами и тривалентами образуются структуры, состоящие из четырех хромосом (квадриваленты). Тогда у тетраплоидов гомологи могут образовывать следующие комбинации: 2+2 (два бивалента), 3+1 (тривалент и унивалент), 4 (квадривалент), а также 2+1+1 (бивалент и два унивалента) или 1+1+1+1 (четыре унивалента). В большинстве случаев нормальная сегрегация хромосом оказывается невозможной. Нормальное распределение хромосом по дочерним клеткам в соотношении 2:2 наблюдается только у тех организмов, у которых преимущественно образуются биваленты, например, у свеклы, арбуза. В последнем случае образуются гаметы, содержащие удвоенное основное хромосомное число (2х).
Вероятно, полиплоидность – это более древнее состояние кариотипа, чем диплоидность. Однако диплоидность сводит к минимуму нарушения в мейозе, и поэтому большинство современных организмов, у которых имеется мейоз, является диплоидами (диплобионтами).
Таким образом, в большинстве случаев полиплоиды воспроизводят себя, минуя половой процесс. В искусственных условиях полиплоидные сорта растений обычно сохраняют с помощью вегетативного размножения. Триплоидные семена получают, скрещивая автотетраплоидные и диплоидные сорта. В этом случае гаметы с удвоенным основным хромосомным числом (2х) сливаются с нормальными гаметами (х).
