
- •Ответы к экзамену по генетике
- •1. Предмет генетики. Этапы развития. Теоретическое и практическое значение генетики.
- •3. Понятие о генетической информации. Роль ядра и цитоплазмы в явлениях наследственности.
- •4. Митоз и мейоз, их сходства и различия.
- •5. Структура и функции днк и рнк, доказательства генетической роли нуклеиновых кислот.
- •6. Современные представления о генетическом коде и его свойства. Мутации кода.
- •Вариации стандартного генетического кода:
- •7. Структурная и молекулярная организация хромосом прокариот и эукариот. Компоненты хроматина и уровни упаковки.
- •8. Цели и методы генетического анализа. Гибридологический метод анализа.
- •9. Моно-, ди, и полигибридное скрещивание. Закономерности «менделеевских» расщеплений.
- •10. Неаллельные взаимодействия: комплементарность и эпистаз.
- •11. Неаллельные взаимодействия: полимерия, плейотропия. Пенетрантность и экспрессивность генов.
- •Механизм
- •12. Хромосомное определение пола. Сцепленное и частично сцепленное с полом наследование признаков. Голандрический тип наследования.
- •13. Балансовая теория определения пола. Гинандроморфизм. Определение пола у дрозофил
- •14. Значение работ Моргана в изучении сцепленного наследования. Кроссинговер и его генетические и цитологические доказательства. Митотический кроссинговер.
- •15. Генетические карты, принцип их построения у прокариот и эукариот. Значение генетических карт в генетике и селекции.
- •16. Основные положения хромосомной теории наследственности по т. Моргану, их экспериментальное подтверждение.
- •17. Микроорганизмы как объекты генетических исследований. Организация генетического аппарата у бактерий и методы генанализа.
- •18. Генетическая рекомбинация при трансформации.
- •19. Трансдукция у бактерий и её значение для картирования генов.
- •20. Конъюгация у бактерий: половой фактор кишечной палочки. Генетическое картирование при конъюгации.
- •21. Пластидная наследственность. Наследование пестролистности у растений, устойчивости к антибиотикам у хламинодомонады.
- •22. Взаимодействие ядерных и внеядерных генов. Цитоплазматическая мужская стерильность у растений.
- •23. Плазмидное наследование. Свойства плазмид. Использование плазмид в генетических исследованиях.
- •24. Типы изменчивости, механизмы их возникновения, роль в эволюции и селекции.
- •25. Мутационная изменчивость. Основные положения мутационной терии Гуго-де-Фриза. Классификация мутаций.
- •26. Автополиплоиды, особенности мейоза.
- •27. Аллополиплоиды, особенности мейоза. Амфидиплоидия.
- •28. Анеуплоидия, ее использование в генетическом анализе. Особенности мейоза.
- •29. Гаплоидия и возможности ее практического использования. Нарушения мейоза у гаплоидов.
- •30. Внутрихромосомные перестройки и их значение в генетике, селекции и эволюции.
- •31. Межхромосомные перестройки и их значение.
- •32. Классификация генных мутаций и молекулярная природа их возникновения.
- •33. Спонтанный и индуцированный мутагенез и факторы их вызывающие.
- •34. Представление школы Моргана о строении и функциях гена. Функциональный и рекомбинантный критерии аллелизма.
- •35. Работы школы Серебровского по ступенчатому аллелизму. Функциональный тест на аллелизм (цис-транс-тест).
- •36. Исследование тонкой структуры гена на примере фага т4 (Бензер). Понятие о мутоне, реконе и цистроне.
- •37. Интрон – экзонная организация генов эукариот, сплайсинг. Структурная организация генома эукариот.
- •38. Регуляция активности генов на примере лактозного оперона (модель Жакоба и Моно).
- •39. Молекулярные механизмы репликации и ее регуляция. Понятие о репликоне.
- •Точки начала репликации репликации
- •40. Стабильность и непостоянство генома и дифференциальная активность генов в ходе индивидуального развития.
- •41. Тканеспецифическая активность генов. Функциональные изменения хромосом в онтогенезе (пуфы, ламповые щетки, гигантские хромосомы).
- •42. Задачи и методология генетической инженерии. Методы выделения и синтеза генов.
- •43. Понятие о векторах. Способы получения рекомбинантных молекул днк. Трансгенные организмы.
- •44. Значение генетической инженерии для решения задач биотехнологии, сельского хозяйства, медицины, экологии.
- •45. Понятие о виде, популяции. Методы изучения природных популяций.
- •46. Закон Харди-Вайнберга, возможности его применения. Факторы динамики генетического состава популяции.
- •3. Выполнение закона Харди–Вайнберга в природных популяциях. Практическое значение закона Харди–Вайнберга
- •47. Естественный отбор (движущий, стабилизирующий, дизруптивный) как направляющий фактор эволюции популяций. Формы искусственного отбора.
- •48. Предмет и задачи селекции. Понятие о породе, сорте, штамме, мутанте.
- •49. Закон гомологических рядов в наследственной изменчивости н. И. Вавилова и его значение для селекции, эволюции.
- •50. Системы скрещиваний в селекции растений и животных. Аутбридинг, инбридинг.
- •51. Отдаленная гибридизация. Стерильность отдаленных гибридов. Особенности межвидовой и межродовой гибридизации. Работы Мичурина, Карпеченко.
- •52. Гетерозис и его генетическая природа. Простые, двойные межлинейные гибриды.
- •53. Методы отбора в селекции. Отбор по фенотипу и генотипу и влияние условий внешней среды на эффективность отбора.
- •54. Сущность адаптивной селекции и ее значение в сельском хозяйстве.
- •55. Человек как объект генетических исследований. Методы изучения генетики человека.
- •56. Проблемы медицинской генетики. Врожденные и наследственные болезни. Генотерапия.
- •57. Социальные и этические проблемы в генетике человека. Роль генетических и социальных факторов в эволюции человека.
- •58. Достижения и перспективы селекции растений в рб и рф.
24. Типы изменчивости, механизмы их возникновения, роль в эволюции и селекции.
Изменчивость — вариабельность (разнообразие) признаков среди представителей данного вида. Различают несколько типов изменчивости:
Наследственную (генотипическую) и ненаследственную (фенотипическую).
Индивидуальную (различие между отдельными особями) и групповую (между группами особей, например, различными популяциями данного вида). Групповая изменчивость является производной от индивидуальной.
Качественную и количественную.
Направленную и ненаправленную.
1. Наследственная изменчивость — свойство организмов приобретать новые признаки в процессе онтогенеза и передавать их потомству. Виды наследственной изменчивости — мутационная и комби -нативная. Материальные основы наследственной изменчивости — изменение генов, генотипа; ее индивидуальный характер (проявление у отдельных особей), необратимость, передача по наследству. 2. Комбинативная изменчивость — результат перекомбинации генов при скрещивании организмов. Причины перекомбинации генов — перекрест и обмен участками гомологичных хромосом, случайный характер распределения хромосом между дочерними клетками в ходе мейоза, случайное сочетание гамет при оплодотворении, взаимодействие генов. Пример: появление дрозофил с темным телом и длинными крыльями при скрещивании серых дрозофил с длинными крыльями с темными дрозофилами с короткими крыльями. 3. Мутационная изменчивость — внезапное, случайное возникновение стойких изменений генетического аппарата, вызывающее появление новых признаков в фенотипе. Примеры: шестипалая рука, альбиносы. Виды мутаций — генные (изменение последовательности нуклеотидов в гене) и хромосомные (увеличение или уменьшение числа хромосом, потеря их части). Последствия генных и хромосомных мутаций — синтез новых белков, а значит, и появление новых признаков у организмов, которые чаще всего ведут к снижению жизнеспособности, а иногда и к смерти. 4. Полиплоидия — наследственная изменчивость, вызванная кратным увеличением числа хромосом. При этом увеличиваются размеры, масса, число семян и плодов у растения. Причины — нарушение процессов митоза или мейоза, нерасхождение хромосом в дочерние клетки. Широкое распространение в природе полиплоидии у растений. Получение полиплоидных сортов растений, их высокая урожайность. 5. Соматические мутации — изменение генов или хромосом в соматических клетках, возникновение изменений в той части организма, которая развилась из мутировавших клеток. Соматические мутации потомству не передаются, они исчезают с гибелью организма. Пример — белая прядь волос у человека.
25. Мутационная изменчивость. Основные положения мутационной терии Гуго-де-Фриза. Классификация мутаций.
Мутационная изменчивость связана с процессом образования мутаций. Мутации – это внезапные скачкообразные стойкие изменения в структуре генотипа. Организмы у которых произошла мутация называются мутунтами. Мутационная теория была создана, как говорилось выше, Гуго де Фризом в 1901-1903 гг. На основных ее положениях строица современная генетика: мутации, дискретные изменения наследственности, в природе спонтанны, мутации передаются по наследству, встречаются достаточно редко и могут быть различных типов. В зависимости от того какой признак положен в основу, на сегоднешний день существует несколько систем классификации мутаций.
Классификация мутаций
1. По способу возникновения. Различают спонтанные и индуцированные мутации Спонтанные происходят в природе крайне редко с частотой 1-100 на миллион экземпляров данного гена. В настоящие время очевидно, что спонтанный мутационный процесс зависит как от внутренних, так и от внешних факторов, которые называют мутационным давлением среды.
Индуцированные мутации возникают при воздействии на человека мутагенами –факторами, вызывающими мутации. Мутагены же бывают трех видов:
Физические ( радиация, электро – магнитное излучение, давление, температура и т.д.)
Химические (цитостатики, спирты,фенолы и т.д.)
Биологические ( бактерии и вирусы )
2. По отношению к зачатковому пути. Существуют соматические и генеративные мутации. Генеративные мутации возникают в репродуктивных тканях и поэтому не всегда выявляются. Для того, чтобы выявилась генеративная мутация, необходимо, чтобы мутантная гамета учавствовала в оплодотворении.
3. По адаптивному занчению. Выделяют положительные, отрицательные и нейтральные мутации. Эта классификация связана с оценкой жизнеспособности образовавшегося мутанта.
4. По изменению генотипа. Мутации бывают генные, хромосомные и геномные геномные.
5. По локализации в клетке. Мутации делятся на ядерные и цитоплазматические. Плазматические мутации возникают в результате мутаций в плазмогенах, находящихяс в митохондриях. Полагают, что именно они приводят к мужскому бесплодию. Причем такие мутации в основном наследуются по женской линии.
Термин «мутация» предложил голландский ботаник Гуго де Фриз в своем классическом труде «Мутационная теория» (1901 —1903 гг.), основные положения которого до сих пор не утратили значения: • мутации возникают внезапно, дискретно, без переходов; • они константны в своем проявлении; • мутации наследуются; • они могут быть как полезными, так и вредными (добавим, а также - нейтральными); • выявление мутаций зависит от количества проанализированных особей; • одни и те же мутации могут возникать повторно, хотя и с низкой частотой. Таким образом, под мутациями подразумеваются дискретные, стабильные изменения наследственного материала, приводящие к изменению фенотипа. Процесс возникновения мутаций называют мутационным, или мутагенезом (последний термин чаще употребляют в отношении индуцированных мутаций). Организм, приобретший какой-либо новый признак и тем самым изменивший свой фенотип в результате мутации, называют мутантом.