
- •Лекція 1. Основи побудови комп’ютерних мереж.
- •1.1. Основні поняття
- •Рівень якості мережевого сервісу
- •Узагальнена структура комп’ютерної мережі
- •Технологія клієнт-сервер
- •Еволюція комп’ютерних мереж
- •Мережі із складною нерегулярною топологією
- •1.2. Об'єднані комп'ютерні мережі
- •1.3. Системна мережева архітектура Процеси
- •Еталонна модель взаємодії відкритих систем
- •Системна мережева архітектура sna
- •Системна мережева архітектура dna
- •Системна архітектура мережі ретрансляції кадрів
- •Системна архітектура мережі атм
- •Лекція 2. Локальні комп’ютерні мережі.
- •2.1. Фізичне середовище передачі дискретних сигналів Коаксіальний кабель
- •Вита пара
- •Оптоволоконний кабель
- •2.2. Синхронізація процесу передачі даних. Синхронізація процесу передачі даних
- •2.3. Захист від помилок.
- •2.4. Базові мережеві топології. Зіркоподібні мережі
- •Мережі з шинною топологією
- •Кільцеві мережі
- •Деревоподібна топологія мережі
- •2.5. Логічна організація мережі
- •2.6. Доступ абонентських систем до загального середовища передачі
- •Метод випадкового доступу
- •Метод синхронного поділу часу
- •Метод маркерного доступу
- •Метод вставки регістра
- •2.7. Керування логічним каналом локальних мереж
- •Особливості еталонної моделі локальної мережі.
- •Лекція 3. Мережа Ethernet.
- •3.1. Мережа Ethernet
- •Структура кадру стандарту ieee-802.3
- •Фізичний рівень мережі Ethernet
- •Структура сегмента мережі Ethernet 10base5
- •Структура сегмента мережі Ethernet 10base2
- •3.2. Мережа Ethernet 10base-т
- •Комутатори мережі Ethernet 10base-т
- •Мережа Fast Ethernet
- •Мережа Ethernet із швидкістю передачі 10 Гбіт/с
- •3.3. Мережа з маркерним методом доступу (стандарт ieee‑802.4)
- •Організація логічного кільця
- •Структура кадру мережі стандарту ieee-802.4
- •Генерація маркера
- •Формування логічного кільця
- •Встановлення нового наступника
- •Лекція 4. Кільцеві мережі Token Ring і fddi.
- •4.1. Мережа Token Ring. Організація мережі
- •Структура кадрів
- •Передача даних
- •Загальне керування мережею
- •Структура мережі
- •4.2. Мережа fddi Організація мережі
- •Керування мережею
- •Структура кадрів
- •Фізичний рівень протоколу
- •5.1. Безпровідне середовище передачі інформації
- •Електромагнітний спектр частот
- •Наземний зв’язок з використанням надвисоких частот
- •Супутниковий зв’язок
- •Широкомовні безпровідні радіоканали
- •Зв’язок в інфрачервоному діапазоні
- •Ущільнення каналів при безпровідній передачі інформації
- •5.2. Архітектура і компоненти бездротової мережі. Стандарт ieee 802.11
- •Бездротові мережі без інфраструктури
- •Розширення протоколу ieee 802.11g
- •Бездротова мережа з інфраструктурою
- •5.3. Рівень керування доступом до середовища
- •Функція розподіленої координації dcf з використанням csma/ca
- •Функція розподіленої координації dcf з використанням алгоритму rts/cts
- •Функція централізованої координації pcf
- •Лекція 6. Канали передачі даних глобальних мереж
- •6.1. Структура каналів
- •Типи каналів
- •6.2. Структура кадрів даних
- •Структура кадру протоколу ddcmp
- •Лекція 7. Комунікаційна система глобальних мереж.
- •7.1. Мережа передачі даних
- •Способи комутації
- •Процедура передачі даних.
- •Вузол комутації повідомлень.
- •7.2. Протоколи мереж комутації пакетів
- •Загальний формат пакету.
- •7.3. Обмін даними
- •Лекція 8. Маршрутизація в мережах передачі даних.
- •8.1. Способи маршрутизації
- •Проста маршрутизація
- •Табличні методи маршрутизації
- •Динамічна маршрутизація
- •8.2. Алгоритми вибору найкоротшого шляху
- •Алгоритм Дейкстри
- •Алгоритм Форда-Фалкерсона
- •8.3. Протоколи маршрутизації.
- •Лекція 9.Керування мережевим трафіком.
- •9.1. Рівні керування трафіком
- •9.2. Керування трафіком на рівні каналів каналів передачі даних
- •9.3. Керування трафіком на мережевому рівні.
- •9.4. Регулювання інтенсивності вхідного трафіка
- •Лекція 10. Стек протоколів tcp/ip – основа мережі Інтернет.
- •10.1. Порівняння еталонних моделей osi і tcp/ip
- •10.2. Мережевий рівень в Інтернет
- •Система ip-адресації
- •Система доменних імен
- •10.3. Транспортна служба
- •Типи мережевих з'єднань і класи транспортних протоколів
- •Логічна модель транспортного рівня
- •10.4. Транспортні протоколи Інтернету
- •Лекція 11. Мережа атм.
- •11.1. Основні принципи технології атм
- •11.2. Віртуальні канали і віртуальні шляхи
- •11.3. Установлення з’єднань в мережі атм
- •11.4. Системна архітектура мережі атм
- •Протоколи рівня адаптації атм
- •Структура рівня адаптації атм
- •11.5. Маршрутизація в мережах атм
- •11.6. Протокол pnni
- •Обмін маршрутною інформацією
- •Адресна доступність
- •Засоби сигналізації протоколу pnni
- •Лекція 12. Мережева технологія mpls.
- •12.1. Основні можливості мpls
- •Структура міток мpls
- •Місце мpls серед інших технологій
- •12.2. Процес функціонування мpls
- •Відношення між ре і р - маршрутизаторами
- •12.3. Переваги mpls
- •12.4. Підтримка QoS
- •12.5. Створення vpn з'єднань за допомогою mpls
- •Лекція 13. Мережеві операційні системи.
- •13.1. Основи організації операційних систем
- •13.2. Структура сучасних операційних систем
- •Керування процесами
- •Файлові системи
- •13.3. Операційна система NetWare Служба каталогів
- •Дерево каталогів
- •Контроль за правом доступу до об’єкта й атрибута.
- •Nds і файлова система
- •13.3. Операційна система unix Структура операційної системи unix
- •Процеси
- •Файлова система unix
- •13.5. Операційна система Windows nt Структура операційної системи Windows nt
- •Системний рівень
- •Доменний підхід
- •Лекція 14. Основи безпеки комп’ютерних мереж.
- •14.1. Проблеми безпеки мереж
- •14.2. Категорії безпеки
- •14.3. Злом інформації
- •Доступ до терміналу
- •Підбір пароля
- •Одержання пароля на основі помилок у реалізації системи
- •Прослуховування трафіку
- •14.4. Захист від атак Мережеві компоненти, що атакують
- •Підслуховування
- •Атаки на транспортному рівні
- •Активні атаки на рівні tcp
- •Системи виявлення атак
- •14.5. Системи захисту
- •14.6. Криптографічні засоби захисту
- •Електронний цифровий підпис
- •Традиційна криптографія
- •Одноразові блокноти
- •Алгоритми із секретним ключем
- •Стандарт шифрування даних (des)
- •Алгоритми з відкритим ключем
- •Апаратні засоби захисту
- •14.8. Міжмережевий екран
- •Типи міжмережевих екранів
- •Архітектура брандмауера
- •Брандмауер із двоспрямованим хостом
- •Хост-бастіон
- •Брандмауер із екрануючою підмережею
- •Лекція 15. Адміністрування комп’ютерних мереж
- •15.1. Планування мережі
- •Аналіз причин впровадження мережевої технології
- •15.2. Аналіз місця розташування
- •Складання переліку додаткового устаткування
- •Аналіз сумісності використовуваного устаткування
- •Програмне забезпечення в якості консультанта
- •15.3. Складання конфігурації
- •15.4. Основи побудови структурованої кабельної системи
- •Підсистеми структурованої кабельної системи
- •15.5. Стандарти структурованої кабельної системи
- •15.6. Планування структури каталогів серверу
- •Одержання списків конфігурації
- •Розклад установки
- •15.7. Процес навчання
- •15.8. Системний журнал
- •15.9. Керування мережею
- •Аналіз роботи системи
- •Резервне копіювання даних
- •Що дублювати
- •Коли копіювати інформацію
- •Типи резервних копій
- •Ведення системного журналу
- •15.10. Віддалене керування
- •15.11. Оцінка додатків
- •Конспект лекцій з навчальної дисципліни «Комп’ютерні мережі»
9.4. Регулювання інтенсивності вхідного трафіка
Одним з основних недоліків, що виникають при віконному керуванні потоком з фіксованими розмірами вікон, є зростання пропорційно до кількості потоків середньої затримки передачі. Існують механізми керування потоком, спрямовані на регулювання інтенсивності вхідного потоку залежно від трафіку всередині мережі. У даному разі задача керування потоком здебільшого розглядається як задача мінімізації деякої вартісної функції шляхом регулювання вхідної інтенсивності потоків.
Різним класам користувачів можуть бути визначені різні штрафні функції, що дає можливість задавати різні пріоритети.
Головна проблема, що виникає під час застосування способів керування потоком, орієнтованих на регулювання вхідної інтенсивності, полягає у поганій адаптованості до швидких змін навантаження різних потоків. Якщо навантаження має пульсуючий характер (тобто коли малі часові інтервали з дуже високою інтенсивністю чергуються з великими часовими інтервалами з низькою інтенсивністю), можуть виникати неприпустимі затримки. Тому були запропоновані механізми, деякою мірою подібні до механізмів віконного керування потоком.
Наприклад, кожному потоку надається можливість передачі N пакетів (вікно), і у вузлі-відправнику пакетів кожного потоку є лічильник P невикористаної частини цього вікна. Пакети допускаються у мережу доти, поки P > 0. Щоразу при надходженні нового пакету значення лічильника зменшується на одиницю, а через N/m секунд (m — інтенсивність надходження підтверджень) значення лічильника збільшується на одиницю. Ця схема називається керуванням потоком з часовим вікном. Вона має багато спільного з наскрізним керуванням потоком за допомогою механізму вікна, розмір якого дорівнює N. Відмінність полягає у тому, що лічильник поновлюється через N/m секунд після надходження пакета, а не через час передачі в обидва кінці, потрібний для повернення відповідного підтвердження. Отже, ця схема базується на деякому алгоритмі керування потоком під час визначення інтенсивності m і, отже, довжини часового інтервалу, через який лічильник поновлюється, тоді як при звичайному віконному керуванні потоком цей інтервал визначається в основному станом трафіка вздовж шляху даного потоку. Очевидно, що звичайний механізм вікна швидше реагує на перевантаження, і тому більш придатний для ситуацій, при яких навантаження часто змінюється. В інших випадках безпосереднє регулювання вхідної інтенсивності має переваги більш точного контролю затримки і більш справедливого розподілу пропускної здатності.
Альтернативним способом безпосереднього регулювання вхідної інтенсивності потоку може розглядатися визначення такого розміру вікна при наскрізному керуванні, яке забезпечить досягнення оптимальної інтенсивності вхідного потоку. У такій схемі необхідна інтенсивність вхідного потоку обчислюється відповідно до деякого алгоритму і реалізується вибором потрібного розміру вікна. Найпростішим способом є обчислення розміру вікна W для потоку за формулою W = l*d, де l — необхідна інтенсивність вхідного потоку; d — оцінка середнього часу передачі в обидва кінці.
Складність такого підходу пов’язана з тим, що час передачі в обидва кінці значення d є невідомим у момент обчислення нового розміру вікна W. Тому воно може бути оцінене за допомогою аналізу статистичних характеристик і результатів попередніх вимірів, унаслідок чого виникає необхідність у збереженні великих обсягів додаткової інформації і збільшується складність алгоритмів керування.