
- •Лекція 1. Основи побудови комп’ютерних мереж.
- •1.1. Основні поняття
- •Рівень якості мережевого сервісу
- •Узагальнена структура комп’ютерної мережі
- •Технологія клієнт-сервер
- •Еволюція комп’ютерних мереж
- •Мережі із складною нерегулярною топологією
- •1.2. Об'єднані комп'ютерні мережі
- •1.3. Системна мережева архітектура Процеси
- •Еталонна модель взаємодії відкритих систем
- •Системна мережева архітектура sna
- •Системна мережева архітектура dna
- •Системна архітектура мережі ретрансляції кадрів
- •Системна архітектура мережі атм
- •Лекція 2. Локальні комп’ютерні мережі.
- •2.1. Фізичне середовище передачі дискретних сигналів Коаксіальний кабель
- •Вита пара
- •Оптоволоконний кабель
- •2.2. Синхронізація процесу передачі даних. Синхронізація процесу передачі даних
- •2.3. Захист від помилок.
- •2.4. Базові мережеві топології. Зіркоподібні мережі
- •Мережі з шинною топологією
- •Кільцеві мережі
- •Деревоподібна топологія мережі
- •2.5. Логічна організація мережі
- •2.6. Доступ абонентських систем до загального середовища передачі
- •Метод випадкового доступу
- •Метод синхронного поділу часу
- •Метод маркерного доступу
- •Метод вставки регістра
- •2.7. Керування логічним каналом локальних мереж
- •Особливості еталонної моделі локальної мережі.
- •Лекція 3. Мережа Ethernet.
- •3.1. Мережа Ethernet
- •Структура кадру стандарту ieee-802.3
- •Фізичний рівень мережі Ethernet
- •Структура сегмента мережі Ethernet 10base5
- •Структура сегмента мережі Ethernet 10base2
- •3.2. Мережа Ethernet 10base-т
- •Комутатори мережі Ethernet 10base-т
- •Мережа Fast Ethernet
- •Мережа Ethernet із швидкістю передачі 10 Гбіт/с
- •3.3. Мережа з маркерним методом доступу (стандарт ieee‑802.4)
- •Організація логічного кільця
- •Структура кадру мережі стандарту ieee-802.4
- •Генерація маркера
- •Формування логічного кільця
- •Встановлення нового наступника
- •Лекція 4. Кільцеві мережі Token Ring і fddi.
- •4.1. Мережа Token Ring. Організація мережі
- •Структура кадрів
- •Передача даних
- •Загальне керування мережею
- •Структура мережі
- •4.2. Мережа fddi Організація мережі
- •Керування мережею
- •Структура кадрів
- •Фізичний рівень протоколу
- •5.1. Безпровідне середовище передачі інформації
- •Електромагнітний спектр частот
- •Наземний зв’язок з використанням надвисоких частот
- •Супутниковий зв’язок
- •Широкомовні безпровідні радіоканали
- •Зв’язок в інфрачервоному діапазоні
- •Ущільнення каналів при безпровідній передачі інформації
- •5.2. Архітектура і компоненти бездротової мережі. Стандарт ieee 802.11
- •Бездротові мережі без інфраструктури
- •Розширення протоколу ieee 802.11g
- •Бездротова мережа з інфраструктурою
- •5.3. Рівень керування доступом до середовища
- •Функція розподіленої координації dcf з використанням csma/ca
- •Функція розподіленої координації dcf з використанням алгоритму rts/cts
- •Функція централізованої координації pcf
- •Лекція 6. Канали передачі даних глобальних мереж
- •6.1. Структура каналів
- •Типи каналів
- •6.2. Структура кадрів даних
- •Структура кадру протоколу ddcmp
- •Лекція 7. Комунікаційна система глобальних мереж.
- •7.1. Мережа передачі даних
- •Способи комутації
- •Процедура передачі даних.
- •Вузол комутації повідомлень.
- •7.2. Протоколи мереж комутації пакетів
- •Загальний формат пакету.
- •7.3. Обмін даними
- •Лекція 8. Маршрутизація в мережах передачі даних.
- •8.1. Способи маршрутизації
- •Проста маршрутизація
- •Табличні методи маршрутизації
- •Динамічна маршрутизація
- •8.2. Алгоритми вибору найкоротшого шляху
- •Алгоритм Дейкстри
- •Алгоритм Форда-Фалкерсона
- •8.3. Протоколи маршрутизації.
- •Лекція 9.Керування мережевим трафіком.
- •9.1. Рівні керування трафіком
- •9.2. Керування трафіком на рівні каналів каналів передачі даних
- •9.3. Керування трафіком на мережевому рівні.
- •9.4. Регулювання інтенсивності вхідного трафіка
- •Лекція 10. Стек протоколів tcp/ip – основа мережі Інтернет.
- •10.1. Порівняння еталонних моделей osi і tcp/ip
- •10.2. Мережевий рівень в Інтернет
- •Система ip-адресації
- •Система доменних імен
- •10.3. Транспортна служба
- •Типи мережевих з'єднань і класи транспортних протоколів
- •Логічна модель транспортного рівня
- •10.4. Транспортні протоколи Інтернету
- •Лекція 11. Мережа атм.
- •11.1. Основні принципи технології атм
- •11.2. Віртуальні канали і віртуальні шляхи
- •11.3. Установлення з’єднань в мережі атм
- •11.4. Системна архітектура мережі атм
- •Протоколи рівня адаптації атм
- •Структура рівня адаптації атм
- •11.5. Маршрутизація в мережах атм
- •11.6. Протокол pnni
- •Обмін маршрутною інформацією
- •Адресна доступність
- •Засоби сигналізації протоколу pnni
- •Лекція 12. Мережева технологія mpls.
- •12.1. Основні можливості мpls
- •Структура міток мpls
- •Місце мpls серед інших технологій
- •12.2. Процес функціонування мpls
- •Відношення між ре і р - маршрутизаторами
- •12.3. Переваги mpls
- •12.4. Підтримка QoS
- •12.5. Створення vpn з'єднань за допомогою mpls
- •Лекція 13. Мережеві операційні системи.
- •13.1. Основи організації операційних систем
- •13.2. Структура сучасних операційних систем
- •Керування процесами
- •Файлові системи
- •13.3. Операційна система NetWare Служба каталогів
- •Дерево каталогів
- •Контроль за правом доступу до об’єкта й атрибута.
- •Nds і файлова система
- •13.3. Операційна система unix Структура операційної системи unix
- •Процеси
- •Файлова система unix
- •13.5. Операційна система Windows nt Структура операційної системи Windows nt
- •Системний рівень
- •Доменний підхід
- •Лекція 14. Основи безпеки комп’ютерних мереж.
- •14.1. Проблеми безпеки мереж
- •14.2. Категорії безпеки
- •14.3. Злом інформації
- •Доступ до терміналу
- •Підбір пароля
- •Одержання пароля на основі помилок у реалізації системи
- •Прослуховування трафіку
- •14.4. Захист від атак Мережеві компоненти, що атакують
- •Підслуховування
- •Атаки на транспортному рівні
- •Активні атаки на рівні tcp
- •Системи виявлення атак
- •14.5. Системи захисту
- •14.6. Криптографічні засоби захисту
- •Електронний цифровий підпис
- •Традиційна криптографія
- •Одноразові блокноти
- •Алгоритми із секретним ключем
- •Стандарт шифрування даних (des)
- •Алгоритми з відкритим ключем
- •Апаратні засоби захисту
- •14.8. Міжмережевий екран
- •Типи міжмережевих екранів
- •Архітектура брандмауера
- •Брандмауер із двоспрямованим хостом
- •Хост-бастіон
- •Брандмауер із екрануючою підмережею
- •Лекція 15. Адміністрування комп’ютерних мереж
- •15.1. Планування мережі
- •Аналіз причин впровадження мережевої технології
- •15.2. Аналіз місця розташування
- •Складання переліку додаткового устаткування
- •Аналіз сумісності використовуваного устаткування
- •Програмне забезпечення в якості консультанта
- •15.3. Складання конфігурації
- •15.4. Основи побудови структурованої кабельної системи
- •Підсистеми структурованої кабельної системи
- •15.5. Стандарти структурованої кабельної системи
- •15.6. Планування структури каталогів серверу
- •Одержання списків конфігурації
- •Розклад установки
- •15.7. Процес навчання
- •15.8. Системний журнал
- •15.9. Керування мережею
- •Аналіз роботи системи
- •Резервне копіювання даних
- •Що дублювати
- •Коли копіювати інформацію
- •Типи резервних копій
- •Ведення системного журналу
- •15.10. Віддалене керування
- •15.11. Оцінка додатків
- •Конспект лекцій з навчальної дисципліни «Комп’ютерні мережі»
Загальний формат пакету.
Для забезпечення передачі інформації протокол Х.25/3 визначає 19 типів пакетів, загальний формат яких зображено на рис. 7.7. Перші три байти є спільними для всіх типів пакетів. Перший байт містить поле ідентифікатора загального формату і поле номера групи логічного каналу. Поле ідентифікатора загального формату (чотири біти) призначене для визначення загального формату (структури) іншої частини заголовка, який залежить від типу пакета.
Рис. 7.7. Загальний формат пакету, визначений протоколом Х.25/3, де:
ІТП – ідентифікатор типу пакета; М – біт продовження даних; P(S) – порядковий номер передачі пакету; P(R) – порядковий номер прийому пакету;
Т – тип пакету (Т=0 – пакет даних, Т=1 - керуючий пакет)
Рекомендація Х.25 допускає одночасне існування певної кількості згрупованих між собою логічних каналів. Для зазначення номера групи логічного каналу, відведеного абонентській системі, і призначається поле групового номера логічного каналу. Це поле займає інші чотири біти першого байта. Другий байт пакета містить поле номера логічного каналу в рамках визначеної групи. Таким чином забезпечується ідентифікація 4096 логічних каналів, з яких 4095 надаються користувачеві, а один, з номером 0, зарезервований для керування (пакети рестарту і діагностики). Під час установлення віртуального з’єднання абонентська система вибирає вільний логічний канал з-поміж числа доступних каналів.
Вміст третього байта для керуючих пакетів трактується як поле ідентифікатора типу пакета, а для інформаційних — як байт послідовності передачі пакетів. До інформаційних належать пакети «Дані» та «Дейтаграма», які містять інформацію користувача. Інші пакети є керуючими і забезпечують передачу інформаційних пакетів мережею комутації пакетів. Ідентифікація типу пакета здійснюється на основі біта типу пакета Т, розташованого у третьому байті пакета. Для інформаційних пакетів значення цього біта дорівнює нулю, а для керуючих пакетів — одиниці. За функціональним призначенням керуючі пакети, у свою чергу, поділяються на пакети: встановлення та завершення з’єднання, керування потоком і повторного встановлення, переривання (з’єднання?), повторного пуску. Слід підкреслити, що залежно від напрямку передачі один і той самий пакет має різну назву. Так пакет, що ініціалізує з’єднання між абонентами, у разі передачі з кінцевого устаткування даних у мережу передачі даних має назву «Запит виклику», а при передачі у зворотному напрямку — «Вхідний виклик».
Як зазначалося раніше, багато протоколів передачі даних передбачають нумерацію даних, що передаються. Для цього у байті ідентифікатора типу пакета відводиться по три розряди на порядковий номер передачі пакета і порядковий номер прийому пакета. Нумерація використовується для контролю передачі пакетів і керування темпом передачі, наприклад, за допомогою реалізації режиму «вікна змінного розміру».
Біт М є ознакою продовження даних і використовується для зазначення ланцюжка пакетів. Значення М = 1 вказує на те, що передається проміжний пакет і передача пакетів даних на цьому не закінчується. При М = 0 пакет даних є останнім у ланцюжку пакетів.
Довжина поля даних в інформаційних пакетах може дорівнювати 16, 32, 64, 128, 256, 512, 1024, 2048 або 4096 байт. За умовчанням довжина поля даних вважається такою, що дорівнює значенню 128 байт. У керуючих пакетах поля даних узагалі може не бути.