- •Intended Audience
- •1.1 Financing the Firm
- •1.2Public and Private Sources of Capital
- •1.3The Environment forRaising Capital in the United States
- •Investment Banks
- •1.4Raising Capital in International Markets
- •1.5MajorFinancial Markets outside the United States
- •1.6Trends in Raising Capital
- •Innovative Instruments
- •2.1Bank Loans
- •2.2Leases
- •2.3Commercial Paper
- •2.4Corporate Bonds
- •2.5More Exotic Securities
- •2.6Raising Debt Capital in the Euromarkets
- •2.7Primary and Secondary Markets forDebt
- •2.8Bond Prices, Yields to Maturity, and Bond Market Conventions
- •2.9Summary and Conclusions
- •3.1Types of Equity Securities
- •Volume of Financing with Different Equity Instruments
- •3.2Who Owns u.S. Equities?
- •3.3The Globalization of Equity Markets
- •3.4Secondary Markets forEquity
- •International Secondary Markets for Equity
- •3.5Equity Market Informational Efficiency and Capital Allocation
- •3.7The Decision to Issue Shares Publicly
- •3.8Stock Returns Associated with ipOs of Common Equity
- •Ipo Underpricing of u.S. Stocks
- •4.1Portfolio Weights
- •4.2Portfolio Returns
- •4.3Expected Portfolio Returns
- •4.4Variances and Standard Deviations
- •4.5Covariances and Correlations
- •4.6Variances of Portfolios and Covariances between Portfolios
- •Variances for Two-Stock Portfolios
- •4.7The Mean-Standard Deviation Diagram
- •4.8Interpreting the Covariance as a Marginal Variance
- •Increasing a Stock Position Financed by Reducing orSelling Short the Position in
- •Increasing a Stock Position Financed by Reducing orShorting a Position in a
- •4.9Finding the Minimum Variance Portfolio
- •Identifying the Minimum Variance Portfolio of Two Stocks
- •Identifying the Minimum Variance Portfolio of Many Stocks
- •Investment Applications of Mean-Variance Analysis and the capm
- •5.2The Essentials of Mean-Variance Analysis
- •5.3The Efficient Frontierand Two-Fund Separation
- •5.4The Tangency Portfolio and Optimal Investment
- •Identification of the Tangency Portfolio
- •5.5Finding the Efficient Frontierof Risky Assets
- •5.6How Useful Is Mean-Variance Analysis forFinding
- •5.8The Capital Asset Pricing Model
- •Implications for Optimal Investment
- •5.9Estimating Betas, Risk-Free Returns, Risk Premiums,
- •Improving the Beta Estimated from Regression
- •Identifying the Market Portfolio
- •5.10Empirical Tests of the Capital Asset Pricing Model
- •Is the Value-Weighted Market Index Mean-Variance Efficient?
- •Interpreting the capm’s Empirical Shortcomings
- •5.11 Summary and Conclusions
- •6.1The Market Model:The First FactorModel
- •6.2The Principle of Diversification
- •Insurance Analogies to Factor Risk and Firm-Specific Risk
- •6.3MultifactorModels
- •Interpreting Common Factors
- •6.5FactorBetas
- •6.6Using FactorModels to Compute Covariances and Variances
- •6.7FactorModels and Tracking Portfolios
- •6.8Pure FactorPortfolios
- •6.9Tracking and Arbitrage
- •6.10No Arbitrage and Pricing: The Arbitrage Pricing Theory
- •Verifying the Existence of Arbitrage
- •Violations of the aptEquation fora Small Set of Stocks Do Not Imply Arbitrage.
- •Violations of the aptEquation by Large Numbers of Stocks Imply Arbitrage.
- •6.11Estimating FactorRisk Premiums and FactorBetas
- •6.12Empirical Tests of the Arbitrage Pricing Theory
- •6.13 Summary and Conclusions
- •7.1Examples of Derivatives
- •7.2The Basics of Derivatives Pricing
- •7.3Binomial Pricing Models
- •7.4Multiperiod Binomial Valuation
- •7.5Valuation Techniques in the Financial Services Industry
- •7.6Market Frictions and Lessons from the Fate of Long-Term
- •7.7Summary and Conclusions
- •8.1ADescription of Options and Options Markets
- •8.2Option Expiration
- •8.3Put-Call Parity
- •Insured Portfolio
- •8.4Binomial Valuation of European Options
- •8.5Binomial Valuation of American Options
- •Valuing American Options on Dividend-Paying Stocks
- •8.6Black-Scholes Valuation
- •8.7Estimating Volatility
- •Volatility
- •8.8Black-Scholes Price Sensitivity to Stock Price, Volatility,
- •Interest Rates, and Expiration Time
- •8.9Valuing Options on More Complex Assets
- •Implied volatility
- •8.11 Summary and Conclusions
- •9.1 Cash Flows ofReal Assets
- •9.2Using Discount Rates to Obtain Present Values
- •Value Additivity and Present Values of Cash Flow Streams
- •Inflation
- •9.3Summary and Conclusions
- •10.1Cash Flows
- •10.2Net Present Value
- •Implications of Value Additivity When Evaluating Mutually Exclusive Projects.
- •10.3Economic Value Added (eva)
- •10.5Evaluating Real Investments with the Internal Rate of Return
- •Intuition for the irrMethod
- •10.7 Summary and Conclusions
- •10A.1Term Structure Varieties
- •10A.2Spot Rates, Annuity Rates, and ParRates
- •11.1Tracking Portfolios and Real Asset Valuation
- •Implementing the Tracking Portfolio Approach
- •11.2The Risk-Adjusted Discount Rate Method
- •11.3The Effect of Leverage on Comparisons
- •11.4Implementing the Risk-Adjusted Discount Rate Formula with
- •11.5Pitfalls in Using the Comparison Method
- •11.6Estimating Beta from Scenarios: The Certainty Equivalent Method
- •Identifying the Certainty Equivalent from Models of Risk and Return
- •11.7Obtaining Certainty Equivalents with Risk-Free Scenarios
- •Implementing the Risk-Free Scenario Method in a Multiperiod Setting
- •11.8Computing Certainty Equivalents from Prices in Financial Markets
- •11.9Summary and Conclusions
- •11A.1Estimation Errorand Denominator-Based Biases in Present Value
- •11A.2Geometric versus Arithmetic Means and the Compounding-Based Bias
- •12.2Valuing Strategic Options with the Real Options Methodology
- •Valuing a Mine with No Strategic Options
- •Valuing a Mine with an Abandonment Option
- •Valuing Vacant Land
- •Valuing the Option to Delay the Start of a Manufacturing Project
- •Valuing the Option to Expand Capacity
- •Valuing Flexibility in Production Technology: The Advantage of Being Different
- •12.3The Ratio Comparison Approach
- •12.4The Competitive Analysis Approach
- •12.5When to Use the Different Approaches
- •Valuing Asset Classes versus Specific Assets
- •12.6Summary and Conclusions
- •13.1Corporate Taxes and the Evaluation of Equity-Financed
- •Identifying the Unlevered Cost of Capital
- •13.2The Adjusted Present Value Method
- •Valuing a Business with the wacc Method When a Debt Tax Shield Exists
- •Investments
- •IsWrong
- •Valuing Cash Flow to Equity Holders
- •13.5Summary and Conclusions
- •14.1The Modigliani-MillerTheorem
- •IsFalse
- •14.2How an Individual InvestorCan “Undo” a Firm’s Capital
- •14.3How Risky Debt Affects the Modigliani-MillerTheorem
- •14.4How Corporate Taxes Affect the Capital Structure Choice
- •14.6Taxes and Preferred Stock
- •14.7Taxes and Municipal Bonds
- •14.8The Effect of Inflation on the Tax Gain from Leverage
- •14.10Are There Tax Advantages to Leasing?
- •14.11Summary and Conclusions
- •15.1How Much of u.S. Corporate Earnings Is Distributed to Shareholders?Aggregate Share Repurchases and Dividends
- •15.2Distribution Policy in Frictionless Markets
- •15.3The Effect of Taxes and Transaction Costs on Distribution Policy
- •15.4How Dividend Policy Affects Expected Stock Returns
- •15.5How Dividend Taxes Affect Financing and Investment Choices
- •15.6Personal Taxes, Payout Policy, and Capital Structure
- •15.7Summary and Conclusions
- •16.1Bankruptcy
- •16.3How Chapter11 Bankruptcy Mitigates Debt Holder–Equity HolderIncentive Problems
- •16.4How Can Firms Minimize Debt Holder–Equity Holder
- •Incentive Problems?
- •17.1The StakeholderTheory of Capital Structure
- •17.2The Benefits of Financial Distress with Committed Stakeholders
- •17.3Capital Structure and Competitive Strategy
- •17.4Dynamic Capital Structure Considerations
- •17.6 Summary and Conclusions
- •18.1The Separation of Ownership and Control
- •18.2Management Shareholdings and Market Value
- •18.3How Management Control Distorts Investment Decisions
- •18.4Capital Structure and Managerial Control
- •Investment Strategy?
- •18.5Executive Compensation
- •Is Executive Pay Closely Tied to Performance?
- •Is Executive Compensation Tied to Relative Performance?
- •19.1Management Incentives When Managers Have BetterInformation
- •19.2Earnings Manipulation
- •Incentives to Increase or Decrease Accounting Earnings
- •19.4The Information Content of Dividend and Share Repurchase
- •19.5The Information Content of the Debt-Equity Choice
- •19.6Empirical Evidence
- •19.7Summary and Conclusions
- •20.1AHistory of Mergers and Acquisitions
- •20.2Types of Mergers and Acquisitions
- •20.3 Recent Trends in TakeoverActivity
- •20.4Sources of TakeoverGains
- •Is an Acquisition Required to Realize Tax Gains, Operating Synergies,
- •Incentive Gains, or Diversification?
- •20.5The Disadvantages of Mergers and Acquisitions
- •20.7Empirical Evidence on the Gains from Leveraged Buyouts (lbOs)
- •20.8 Valuing Acquisitions
- •Valuing Synergies
- •20.9Financing Acquisitions
- •Information Effects from the Financing of a Merger or an Acquisition
- •20.10Bidding Strategies in Hostile Takeovers
- •20.11Management Defenses
- •20.12Summary and Conclusions
- •21.1Risk Management and the Modigliani-MillerTheorem
- •Implications of the Modigliani-Miller Theorem for Hedging
- •21.2Why Do Firms Hedge?
- •21.4How Should Companies Organize TheirHedging Activities?
- •21.8Foreign Exchange Risk Management
- •Indonesia
- •21.9Which Firms Hedge? The Empirical Evidence
- •21.10Summary and Conclusions
- •22.1Measuring Risk Exposure
- •Volatility as a Measure of Risk Exposure
- •Value at Risk as a Measure of Risk Exposure
- •22.2Hedging Short-Term Commitments with Maturity-Matched
- •Value at
- •22.3Hedging Short-Term Commitments with Maturity-Matched
- •22.4Hedging and Convenience Yields
- •22.5Hedging Long-Dated Commitments with Short-Maturing FuturesorForward Contracts
- •Intuition for Hedging with a Maturity Mismatch in the Presence of a Constant Convenience Yield
- •22.6Hedging with Swaps
- •22.7Hedging with Options
- •22.8Factor-Based Hedging
- •Instruments
- •22.10Minimum Variance Portfolios and Mean-Variance Analysis
- •22.11Summary and Conclusions
- •23Risk Management
- •23.2Duration
- •23.4Immunization
- •Immunization Using dv01
- •Immunization and Large Changes in Interest Rates
- •23.5Convexity
- •23.6Interest Rate Hedging When the Term Structure Is Not Flat
- •23.7Summary and Conclusions
- •Interest Rate
- •Interest Rate
8.2Option Expiration
Exhibit 8.1, first seen in Chapter 7, graphs the value of a call and put option at the
expiration date against the value of the underlying asset at expiration. In this chapter,
we attach some algebra to the graphs of call and put values. For expositional simplic-
ity, we will often refer to the underlying asset as a share of common stock, but our
results also apply to options on virtually any financial instrument.
The uncertain future stock price at the expiration date, T,is denoted by S. The
T
strike price is denoted by K. The expiration value for the call option is the larger
ofzero and the difference between the stock price at the expiration date and the
strike price, denoted as max[0, S K]. For the put option, the expiration value is
T
max[0, K S].
T
3Typically, the underlying asset is common stock, a portfolio of stocks, foreign currencies, or futures
contracts, but there are many other assets or portfolios of assets on which options can be written. We use
the term “asset” loosely here to mean anything that has an uncertain value over time, be it an asset, a
liability, a contract, or a commodity. There is a vast over-the-counter market between financial institutions
in which options of almost any variety on virtually any underlying asset or portfolio of assets are traded.
4Deferred American options, not discussed here, have issue dates that precede their commencement
dates.
-
Grinblatt
536 Titman: FinancialII. Valuing Financial Assets
8. Options
© The McGraw
536 HillMarkets and Corporate
Companies, 2002
Strategy, Second Edition
260 |
Part IIValuing Financial Assets |
EXHIBIT8.1 |
The Value of a Call Option and a Put Option at Expiration |
-
Call
Panel A: Call Option
value
Call: max [0,S T – K]
-
No
Exercise region
exercise region
-
45
S T
K
-
Put
Panel B: Put Option
value
Put: max [0,K –S ] T
-
No
Exercise region
Exercise region
exercise region
-
45
S T
K
Note that the two graphs in Exhibit 8.1 never lie below the horizontal axis. They
either coincide with the axis or lie above it on the 45°line. In algebraic terms, the expres-
sionsfor the future call value, max[0, S K], and the future put value, max[0, K S],
TT
are never negative. Recall from Chapter 7 that options can never have a negative value
because options expire unexercised if option exercise hurts the option holder. The
absence of a negative future value for the option and the possibility of a positive future
value makes paying for an option worthwhile.
Future cash flows are never positive when writing an option. Exhibit 8.2 illustrates
the value at expiration of the short position generated by writing an option. When the
call’s strike price, K,exceeds the future stock price S(or Sexceeds Kfor the put), the
TT
option expires unexercised. On the other hand, if Sexceeds K,the call writer has to
T
sell a share of stock for less than its fair value. Similarly, if Kexceeds S,the put writer
T
has to buy a share of stock for more than it is worth. In all cases, there is no positive
future cash flow to the option writer. To compensate the option writer for these future
adverse consequences, the option buyer pays money to the writer to acquire the option.
Grinblatt |
II. Valuing Financial Assets |
8. Options |
©
The McGraw |
Markets and Corporate |
|
|
Companies, 2002 |
Strategy, Second Edition |
|
|
|
|
Chapter 8Options |
261 |
EXHIBIT8.2 |
The Value of Short Positions in Call and Put Options at Expiration |
|
-
Call
Panel A: Short Call Option
value
-
K
S T
No
Exercise region
exercise region
Call: max [0,ST – K]
-
Put
Panel B: Short Put Option
value
-
K
S T
No
Exercise region
exercise region
Put: max [0,K –ST ]
Finally, observe that the nonrandom number S, which denotes the current stock
0
price, does not appear in Exhibits 8.1 and 8.2 because the focus is only on what hap-
pens at option expiration. One of the goals of this chapter is to translate the future rela-
tion between the stock value and the option value into a relation between the current
value of the stock and the current value of the option. The next section illustrates the
type of reasoning used to derive such a relation.
