- •Intended Audience
- •1.1 Financing the Firm
- •1.2Public and Private Sources of Capital
- •1.3The Environment forRaising Capital in the United States
- •Investment Banks
- •1.4Raising Capital in International Markets
- •1.5MajorFinancial Markets outside the United States
- •1.6Trends in Raising Capital
- •Innovative Instruments
- •2.1Bank Loans
- •2.2Leases
- •2.3Commercial Paper
- •2.4Corporate Bonds
- •2.5More Exotic Securities
- •2.6Raising Debt Capital in the Euromarkets
- •2.7Primary and Secondary Markets forDebt
- •2.8Bond Prices, Yields to Maturity, and Bond Market Conventions
- •2.9Summary and Conclusions
- •3.1Types of Equity Securities
- •Volume of Financing with Different Equity Instruments
- •3.2Who Owns u.S. Equities?
- •3.3The Globalization of Equity Markets
- •3.4Secondary Markets forEquity
- •International Secondary Markets for Equity
- •3.5Equity Market Informational Efficiency and Capital Allocation
- •3.7The Decision to Issue Shares Publicly
- •3.8Stock Returns Associated with ipOs of Common Equity
- •Ipo Underpricing of u.S. Stocks
- •4.1Portfolio Weights
- •4.2Portfolio Returns
- •4.3Expected Portfolio Returns
- •4.4Variances and Standard Deviations
- •4.5Covariances and Correlations
- •4.6Variances of Portfolios and Covariances between Portfolios
- •Variances for Two-Stock Portfolios
- •4.7The Mean-Standard Deviation Diagram
- •4.8Interpreting the Covariance as a Marginal Variance
- •Increasing a Stock Position Financed by Reducing orSelling Short the Position in
- •Increasing a Stock Position Financed by Reducing orShorting a Position in a
- •4.9Finding the Minimum Variance Portfolio
- •Identifying the Minimum Variance Portfolio of Two Stocks
- •Identifying the Minimum Variance Portfolio of Many Stocks
- •Investment Applications of Mean-Variance Analysis and the capm
- •5.2The Essentials of Mean-Variance Analysis
- •5.3The Efficient Frontierand Two-Fund Separation
- •5.4The Tangency Portfolio and Optimal Investment
- •Identification of the Tangency Portfolio
- •5.5Finding the Efficient Frontierof Risky Assets
- •5.6How Useful Is Mean-Variance Analysis forFinding
- •5.8The Capital Asset Pricing Model
- •Implications for Optimal Investment
- •5.9Estimating Betas, Risk-Free Returns, Risk Premiums,
- •Improving the Beta Estimated from Regression
- •Identifying the Market Portfolio
- •5.10Empirical Tests of the Capital Asset Pricing Model
- •Is the Value-Weighted Market Index Mean-Variance Efficient?
- •Interpreting the capm’s Empirical Shortcomings
- •5.11 Summary and Conclusions
- •6.1The Market Model:The First FactorModel
- •6.2The Principle of Diversification
- •Insurance Analogies to Factor Risk and Firm-Specific Risk
- •6.3MultifactorModels
- •Interpreting Common Factors
- •6.5FactorBetas
- •6.6Using FactorModels to Compute Covariances and Variances
- •6.7FactorModels and Tracking Portfolios
- •6.8Pure FactorPortfolios
- •6.9Tracking and Arbitrage
- •6.10No Arbitrage and Pricing: The Arbitrage Pricing Theory
- •Verifying the Existence of Arbitrage
- •Violations of the aptEquation fora Small Set of Stocks Do Not Imply Arbitrage.
- •Violations of the aptEquation by Large Numbers of Stocks Imply Arbitrage.
- •6.11Estimating FactorRisk Premiums and FactorBetas
- •6.12Empirical Tests of the Arbitrage Pricing Theory
- •6.13 Summary and Conclusions
- •7.1Examples of Derivatives
- •7.2The Basics of Derivatives Pricing
- •7.3Binomial Pricing Models
- •7.4Multiperiod Binomial Valuation
- •7.5Valuation Techniques in the Financial Services Industry
- •7.6Market Frictions and Lessons from the Fate of Long-Term
- •7.7Summary and Conclusions
- •8.1ADescription of Options and Options Markets
- •8.2Option Expiration
- •8.3Put-Call Parity
- •Insured Portfolio
- •8.4Binomial Valuation of European Options
- •8.5Binomial Valuation of American Options
- •Valuing American Options on Dividend-Paying Stocks
- •8.6Black-Scholes Valuation
- •8.7Estimating Volatility
- •Volatility
- •8.8Black-Scholes Price Sensitivity to Stock Price, Volatility,
- •Interest Rates, and Expiration Time
- •8.9Valuing Options on More Complex Assets
- •Implied volatility
- •8.11 Summary and Conclusions
- •9.1 Cash Flows ofReal Assets
- •9.2Using Discount Rates to Obtain Present Values
- •Value Additivity and Present Values of Cash Flow Streams
- •Inflation
- •9.3Summary and Conclusions
- •10.1Cash Flows
- •10.2Net Present Value
- •Implications of Value Additivity When Evaluating Mutually Exclusive Projects.
- •10.3Economic Value Added (eva)
- •10.5Evaluating Real Investments with the Internal Rate of Return
- •Intuition for the irrMethod
- •10.7 Summary and Conclusions
- •10A.1Term Structure Varieties
- •10A.2Spot Rates, Annuity Rates, and ParRates
- •11.1Tracking Portfolios and Real Asset Valuation
- •Implementing the Tracking Portfolio Approach
- •11.2The Risk-Adjusted Discount Rate Method
- •11.3The Effect of Leverage on Comparisons
- •11.4Implementing the Risk-Adjusted Discount Rate Formula with
- •11.5Pitfalls in Using the Comparison Method
- •11.6Estimating Beta from Scenarios: The Certainty Equivalent Method
- •Identifying the Certainty Equivalent from Models of Risk and Return
- •11.7Obtaining Certainty Equivalents with Risk-Free Scenarios
- •Implementing the Risk-Free Scenario Method in a Multiperiod Setting
- •11.8Computing Certainty Equivalents from Prices in Financial Markets
- •11.9Summary and Conclusions
- •11A.1Estimation Errorand Denominator-Based Biases in Present Value
- •11A.2Geometric versus Arithmetic Means and the Compounding-Based Bias
- •12.2Valuing Strategic Options with the Real Options Methodology
- •Valuing a Mine with No Strategic Options
- •Valuing a Mine with an Abandonment Option
- •Valuing Vacant Land
- •Valuing the Option to Delay the Start of a Manufacturing Project
- •Valuing the Option to Expand Capacity
- •Valuing Flexibility in Production Technology: The Advantage of Being Different
- •12.3The Ratio Comparison Approach
- •12.4The Competitive Analysis Approach
- •12.5When to Use the Different Approaches
- •Valuing Asset Classes versus Specific Assets
- •12.6Summary and Conclusions
- •13.1Corporate Taxes and the Evaluation of Equity-Financed
- •Identifying the Unlevered Cost of Capital
- •13.2The Adjusted Present Value Method
- •Valuing a Business with the wacc Method When a Debt Tax Shield Exists
- •Investments
- •IsWrong
- •Valuing Cash Flow to Equity Holders
- •13.5Summary and Conclusions
- •14.1The Modigliani-MillerTheorem
- •IsFalse
- •14.2How an Individual InvestorCan “Undo” a Firm’s Capital
- •14.3How Risky Debt Affects the Modigliani-MillerTheorem
- •14.4How Corporate Taxes Affect the Capital Structure Choice
- •14.6Taxes and Preferred Stock
- •14.7Taxes and Municipal Bonds
- •14.8The Effect of Inflation on the Tax Gain from Leverage
- •14.10Are There Tax Advantages to Leasing?
- •14.11Summary and Conclusions
- •15.1How Much of u.S. Corporate Earnings Is Distributed to Shareholders?Aggregate Share Repurchases and Dividends
- •15.2Distribution Policy in Frictionless Markets
- •15.3The Effect of Taxes and Transaction Costs on Distribution Policy
- •15.4How Dividend Policy Affects Expected Stock Returns
- •15.5How Dividend Taxes Affect Financing and Investment Choices
- •15.6Personal Taxes, Payout Policy, and Capital Structure
- •15.7Summary and Conclusions
- •16.1Bankruptcy
- •16.3How Chapter11 Bankruptcy Mitigates Debt Holder–Equity HolderIncentive Problems
- •16.4How Can Firms Minimize Debt Holder–Equity Holder
- •Incentive Problems?
- •17.1The StakeholderTheory of Capital Structure
- •17.2The Benefits of Financial Distress with Committed Stakeholders
- •17.3Capital Structure and Competitive Strategy
- •17.4Dynamic Capital Structure Considerations
- •17.6 Summary and Conclusions
- •18.1The Separation of Ownership and Control
- •18.2Management Shareholdings and Market Value
- •18.3How Management Control Distorts Investment Decisions
- •18.4Capital Structure and Managerial Control
- •Investment Strategy?
- •18.5Executive Compensation
- •Is Executive Pay Closely Tied to Performance?
- •Is Executive Compensation Tied to Relative Performance?
- •19.1Management Incentives When Managers Have BetterInformation
- •19.2Earnings Manipulation
- •Incentives to Increase or Decrease Accounting Earnings
- •19.4The Information Content of Dividend and Share Repurchase
- •19.5The Information Content of the Debt-Equity Choice
- •19.6Empirical Evidence
- •19.7Summary and Conclusions
- •20.1AHistory of Mergers and Acquisitions
- •20.2Types of Mergers and Acquisitions
- •20.3 Recent Trends in TakeoverActivity
- •20.4Sources of TakeoverGains
- •Is an Acquisition Required to Realize Tax Gains, Operating Synergies,
- •Incentive Gains, or Diversification?
- •20.5The Disadvantages of Mergers and Acquisitions
- •20.7Empirical Evidence on the Gains from Leveraged Buyouts (lbOs)
- •20.8 Valuing Acquisitions
- •Valuing Synergies
- •20.9Financing Acquisitions
- •Information Effects from the Financing of a Merger or an Acquisition
- •20.10Bidding Strategies in Hostile Takeovers
- •20.11Management Defenses
- •20.12Summary and Conclusions
- •21.1Risk Management and the Modigliani-MillerTheorem
- •Implications of the Modigliani-Miller Theorem for Hedging
- •21.2Why Do Firms Hedge?
- •21.4How Should Companies Organize TheirHedging Activities?
- •21.8Foreign Exchange Risk Management
- •Indonesia
- •21.9Which Firms Hedge? The Empirical Evidence
- •21.10Summary and Conclusions
- •22.1Measuring Risk Exposure
- •Volatility as a Measure of Risk Exposure
- •Value at Risk as a Measure of Risk Exposure
- •22.2Hedging Short-Term Commitments with Maturity-Matched
- •Value at
- •22.3Hedging Short-Term Commitments with Maturity-Matched
- •22.4Hedging and Convenience Yields
- •22.5Hedging Long-Dated Commitments with Short-Maturing FuturesorForward Contracts
- •Intuition for Hedging with a Maturity Mismatch in the Presence of a Constant Convenience Yield
- •22.6Hedging with Swaps
- •22.7Hedging with Options
- •22.8Factor-Based Hedging
- •Instruments
- •22.10Minimum Variance Portfolios and Mean-Variance Analysis
- •22.11Summary and Conclusions
- •23Risk Management
- •23.2Duration
- •23.4Immunization
- •Immunization Using dv01
- •Immunization and Large Changes in Interest Rates
- •23.5Convexity
- •23.6Interest Rate Hedging When the Term Structure Is Not Flat
- •23.7Summary and Conclusions
- •Interest Rate
- •Interest Rate
Value at Risk as a Measure of Risk Exposure
Perhaps the most popular way to measure risk exposure today is value at risk (VAR),
defined as the worst loss possible under normal market conditionsfor a given time
horizon. For example, an investment position that loses a maximum of $100 million
over the next year, no more than 1 percent of the time, will be viewed by some man-
agers as having a value at risk of $100 million for the next year.
Value at risk is determined by the time interval under consideration as well as by
what the manager regards as normal market conditions. Aposition with a value at risk
of $100 million over the next year will have considerably less value at risk over a
shorter horizon, say over the next month. Similarly, a manager who considers abnor-
mally bad market conditions to be those that occur less than 5 percent of the time will
have less value at risk than a manager who is willing to ignore only those losses that,
because of their astonishing magnitude, occur less than 1 percent of the time.
The importance of both the significance level (5 percent or 1 percent as the typ-
ical thresholds for determining abnormal market conditions) and the time horizon are
illustrated when representing value at risk in a diagram using the distribution of prof-
its and losses. Exhibit 22.1 illustrates the value at risk at the 5 percent significance
level for a transaction with zero expected profit. The time horizon affects the shape
of the distribution curve. The longer the time horizon, the more uncertain the prof-
its, and the more spread out is the normal distribution curve. This should shift point
A—the boundary of the 5 percent area under the curve’s left tail—to the left, increas-
ing VAR.The threshold for the area in the tail (5 percent versus 1 percent) matters,
too, as a shift to a 1 percent tail as the threshold moves point Ato the left, thereby
increasing VAR.
Value at risk is the standard methodology used for measuring the risk to the value
of a portfolio of derivatives or other securities. There is a regulatory impetus for this.
In late 1996, the Bank for International Settlements, the U.S. Securities and Exchange
Commission, and the Federal Reserve Board proposed that the institutions they
supervise use this risk measure as a standard for certain activities. An analogous
methodology applied to cash flows, known as cash flow at risk (CAR), is becoming
an increasingly important concept for corporations.
Estimating VARand CARfrom Standard Deviations.VARand CARare simple
translations of the standard deviation if the value or cash flow is normally distributed.
For example,
3However, until recently GARCH estimation was virtually impossible to implement when there are
five or more risk factors.
-
Grinblatt
1567 Titman: FinancialVI. Risk Management
22. The Practice of Hedging
© The McGraw
1567 HillMarkets and Corporate
Companies, 2002
Strategy, Second Edition
778Part VIRisk Management
EXHIBIT22.1Probability Distribution and Value at Risk
Probability
Critical value
-
5%
A0
Profit
Value at
risk
VAR(5% significance level) 1.65
where is the standard deviation of the value. The same formula applies to CAR,except
that is the standard deviation of the cash flow.
The 1.65 in the preceding equation is obtained from a normal distribution table,
such as that found in Table A.5 in Appendix Aat the end of this text. In particular, note
that N( 1.65) is approximately .05 in such a table. More generally, let xbe the value
or cash flow at which the probability that a normally distributed value or cash flow
with a mean of zero and a standard deviation of is less than ppercent; that is, N(x)
p%. Then, VARor CARis x.
Example 22.2 illustrates how to transform a to a CAR.
Example 22.2:ComputingCARfrom Standard Deviations Assuming a
NormalDistribution
In Example 22.1, the standard deviation of the cash flow was approximately $576,200.What
is the cash flow at risk at the 5 percent significance level assuming that the cash flow is nor-
mally distributed?
Answer:1.65($576,200)$950,720.
Estimating VARorCARUsing Simulation.When CARis estimated, simulation usu-
ally is preferred to the standard deviation formula as an estimation procedure. Given
prespecified factor betas, the cash flow is then simulated from the factor equation for
the factor values observed over a given historical period. The CARis then the differ-
ence between the average cash flow and the fifth percentile outcome over the historical
period.
Grinblatt |
VI. Risk Management |
22. The Practice of Hedging |
©
The McGraw |
Markets and Corporate |
|
|
Companies, 2002 |
Strategy, Second Edition |
|
|
|
-
Chapter 22
The Practice of Hedging
779
