
- •Функциональные устройства микропроцессорных систем
- •Функциональные устройства микропроцессорных систем
- •Часть I
- •Введение
- •Элементы алгебры логики
- •Логические функции одной переменной
- •Логические функции двух переменных
- •Свойства элементарных функций алгебры логики
- •Функционально полные системы булевых функций
- •Комбинационные схемы
- •Базовые элементы 2и-не и 2или-не
- •Логический элемент 2и-не
- •Логический элемент 2или-не
- •Электронная реализация базового логического элемента 2и-не
- •Простейшие логические элементы Логический элемент 2и
- •Логический элемент 2или
- •Логический элемент 3и
- •Логический элемент Исключающее или
- •Комбинирование логических элементов
- •Простейшие интегральные микросхемы средней степени интеграции
- •Типовые комбинационные схемы Полусумматоры
- •Одноразрядные полные сумматоры
- •Дешифраторы
- •Шифраторы
- •Компараторы
- •Сравнение на равенство
- •Сравнение на “больше”
- •Мультиплексоры
- •Синтез комбинационных схем
- •Схемы с элементами памяти Цифровые автоматы
- •Триггеры
- •Асинхронный (несинхронизируемый) rs-триггер
- •Синхронизируемый (тактируемый) rs-триггер
- •D-триггер
- •Т-триггер
- •Универсальный jk-триггер
- •Классификация триггеров
- •Одноступенчатые и двухступенчатые триггеры
- •Счетчики
- •Суммирующий счетчик с последовательным переносом
- •Другие типы счетчиков
- •Регистры
- •Параллельные регистры
- •Последовательные регистры
- •Система маркировки интегральных микросхем
- •Пример маркировки имс
- •Рекомендуемая литература
- •Часть I
Базовые элементы 2и-не и 2или-не
Основу сложных КС, реализующих произвольные булевые функции, составляют базовые элементы, обычно 2И-НЕ или 2ИЛИ-НЕ. Это обусловлено тем, что если имеется возможность создать электронное устройство, реализующее любую из этих двух функций, то тогда вследствие функциональной полноты последних на базе созданного устройства можно реализовать любую другую сколь угодно сложную логическую функцию путем соответствующего соединения друг с другом требуемого количества базовых элементов.
Логический элемент 2и-не
Условное обозначение Логическая функция Таблица соответствия
x1 |
x2 |
y |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
0 |
y=
Логический элемент 2или-не
Условное обозначение Логическая функция Таблица соответствия
x1 |
x2 |
y |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
y =
Электронная реализация базового логического элемента 2и-не
Рис. 1. Электронная реализация логического элемента 2И-НЕ.
коллектор-эмиттер транзистора VT1 составляет порядка Uкэ~0.1 В, поэтому напряжение на коллекторе Uk1уменьшается почти до нулевого потенциала, что приводит к закрытию транзисторов VT2, VT3. При этом напряжение на коллекторе транзистора VT2 будет близко к напряжению питания и ток через резистор R2 и открытый переход база-эмиттер приводит к открытию транзистора VT4. В результате напряжение питания будет делиться на выходном делителе, образуемом резистором R3, открытым транзистором VT4, диодом и закрытым транзистором VT3. Т.к. сопротивление закрытого транзистора много больше сопротивления открытого транзистора, то на выходе у получим высокий уровень напряжения, т.е. логическую 1.
Аналогичная ситуация имеет место при х2=0, х1=1, а также при х1=х2=0.
Пусть теперь на входах х1, х2 присутствует высокий уровень напряжения (х1=х2=1). Тогда переход эмиттер-база транзистора VT1 закрыт, но переход база-коллектор этого транзистора будет открыт в прямом направлении. В результате открываются транзисторы VT2, VT3, и напряжение на коллекторе Uk2близко к нулю. Это приводит к закрытию транзистора VT4. Следовательно, в этом случае напряжение на выходе у будет близко к нулю, т.е. соответствует уровню логической 1.
Таким образом, мы убедились, что данная
электрическая схема позволяет реализовать
таблицу соответствия логической функции
2И-НЕ, представляемой функцией Шеффера
y=:
х1 |
х2 |
у |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
0 |