Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Машматер Конспект лекц 1 ч.doc
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
8.26 Mб
Скачать

Влияние легирующих элементов на критические точки и свойства стали

Легирующие элементы значительно влияют на температурное положение критиче­ских точек в сталях. В частности, они могут интенсивно смещать точку Ас1. Подобное влияние легирующих элементов связано с двумя факторами.

Рис. 78. Влияние легирующих элементов на положение критической точки Ас1 (а) и содержание углерода в эвтектоиде (б)

Как известно, критическая температура Ас1 в углеро­дистой стали отвечает превращению эвтектоидной смеси перлита +Fе3С в аустенит путем фазового перехода , диссоциации карбида и растворению углерода в -же­лезе. С одной стороны, легирующие элементы изменяют температуру прeвращения для феррита, входящего в состав эвтектоида (перлита), и, с другой стороны, влияют на температуру диссоциации эвтектоидных карбидов и по­следующее растворение углерода и легирующих элемен­тов в -железе. Как правило, карбидообразующие элементы повышают температуру диссоциации карбидов, и, если при этом они также повышают температуру -превращения, то влия­ние их на точку Ас1 сказывается особенно сильно (рис. 78).

Некарбидообразующие элементы, растворяясь в цемен­тите, несколько понижают температуру диссоциации кар­бида. При этом никель и марганец понижают температуру -перехода и, следователь­но, снижают точку Ас1. Свое­образно влияние хрома на точку Ас1. Он до 12–13 % сравнительно слабо повышает точку Ас1, а при содержа­нии его более 14 % наблюдается резкое повышение темпе­ратуры Ас1. Подобное влияние объясняется тем, что при со­держании хрома до 12 – 13 % он понижает температуру -перехода, а наблюдаемое при этих содержаниях хрома по­вышение точки Ас1 обусловлено более сильным влиянием диссоциации эвтектоидных карбидов при этих температурах. Закономерности влияния элементов на критические точ­ки в основном сохраняются и в сталях, содержащих одно­временно несколько легирующих элементов.

Легирующие элементы значительно влияют и на поло­жение эвтектоидной точки S (рис. 79), и на предельную концентрацию углерода в аустените (точку Е). Некарбидообразующие элементы (никель, кобальт, кремний), растворяясь в фер­рите и замещая часть атомов железа в его решетке, тем самым уменьшают содержание железа в эвтектоиде и сме­щают точку S в сторону меньших концентраций углерода. Аналогично влияют и карбидообразующие эле­менты, которые в большом количестве растворяются в фер­рите. Их карбиды участвуют в образовании эвтектоида (например, Мп и Сr). Такие элементы, как Мо и W, сначала уменьшают, а затем увеличивают содержание уг­лерода в эвтектоиде.

Имеются сведения, что сильные карбидообразующие элементы Тi, Nb и V, незначительно раст­воряющиеся в феррите и образующие стойкие карбиды, ко­торые не участвуют в образовании эвтектоида, уменьшают количество эвтектоида в стали и увеличивают содержание углерода в эвтектоиде, т. е. смещают точку S в сторону больших концентраций углерода. В то же время, если Тi, Nb и V растворены в аустените, то они снижают содержа­ние углерода в эвтектоиде.

Большинство легирующих элементов понижает предел растворимости углерода в -железе и, следовательно, сме­щает точку Е на диаграмме FеFе3С в сторону меньших концентраций углерода.

Рис. 79. Изменение содержания углерода в эвтектоиде и эвтектике при легировании

Легирующие элементы смещают не только критические точки равновесных систем, но и изменяют кинетику распада аустенита. Кинетика распада аустенита опре­деляет поведение стали при термической обработке. Влияние же легирующих элементов на кинетику превращения аустенита очень велико.

Элементы, которые только растворяются в феррите или цементите, не образуя специальных карбидов, оказывают лишь количественное влияние на процессы превращения (изменяют длительность инкубационного периода). Они или ускоряют превращение (к таким элементам относится только кобальт), или замедляют его (большинство элементов, в том числе марганец, никель, медь и др.).

Рис. 80. Диаграммы изотермического превращения аустенита: доэвтектоидной (а), эвтектоидной (б) и заэвтектоидной (с) углеродистой стали

Карбидообразующие элементы вносят не только количе­ственные, но и качественные изменения в кинетику изотермиче­ского превращения. Так, легирующие элементы, образующие растворимые в аустените карбиды, при разных температурах по-разному влияют на скорость распада аустенита: при 700 – 500 оС (образование перлита) – замедляют превращение, а при 500 – 400 оС – весьма значительно замедляют превращение; при 400 – 300 оС (об­разование бейнита) – ускоряет превращение при малых концентрациях и замедляют при больших.

Таким образом, в сталях, легированных карбидообразующими элементами (хром, молибден, вольфрам), наблюдаются два максимума скорости изотермического распада аустенита, раз­делен­ных областью высокой устойчивости пе­ре­охлажденного аустенита. Изотермический распад аустенита имеет два явно выраженных интервала превращений – превращение в пластинчатые кристаллиты (перлитное превращение) и превращение в игольчатые кристаллиты (бейнитные превращения).

Диаграммы изотермичес­кого распада представлены на рис. 80 и 81. Видно, что увеличение содержания углерода понижает температуры начала и конца мартенситного превращения; форма кривых начала и конца перлитного превращения принципиально не изменяется.

При легировании карбидообразующими элементами диаграмма приобретает другой вид (рис. 81). Причины изменения формы диаграммы подробно изучаются в дисциплине “Теория термической обработки”. Следует обратить внимание на тот факт, что положение бейнитной области зависит от содержания углерода и ЛЭ-карбидо­обра­зователя.

В легированных сталях в зависимости от положения линий начала перлитного превращения и точки Мн можно получить стали перлитного, мартенситного, бейнитного или аустенитного классов. Увеличение инкубационного периода при легировании позволяет создавать стали с высокой прокаливаемостью.

Рис. 81. Схемы диаграмм изотермического распада аустенита, легированного карбидообразующими элементами: а – малоуглеродистая сталь; б – высокоуглеродистая сталь

Легирующие элементы не влияют на кинетику мартенситного превращения, которая, по-видимому, похожа во всех сталях. Их влияние сказывается исключительно на положении температурного интервала мартенситного превращения, а это в свою очередь отражается и на количестве остаточного аустенита, которое фиксируется в закаленной стали.

Рис. 82. Влияние ЛЭ на Мн и содержание остаточного аустенита в стали с 1 % углерода

Некоторые эле­менты повышают мартенситную точку и уменьшают количество остаточного аусте­нита (алюминий, кобальт), другие не влияют на нее (кремний), но большинство снижает мартенситную точку и увеличивает количество остаточного аустенита (рис. 82). Из диаграммы видно, что 5% Мn снижает мартенситную точку до 0 оС, следовательно, при таком (или большем) содержании это­го легирующего элемента можно зафиксировать аустенитное состояние посредством быстрого охлаждения..

Л 5.3. Влияние легирования на вязкость, прочность, Тх , размер зерна.