
- •Конспект лекций
- •" Машиностроительные материалы "
- •1 Часть (спецстали)
- •150100 «Металловедение и технология металлов»
- •Содержание
- •Классификация легирующих элементов
- •Классификация сталей по общим признакам.
- •Стандартизация сталей в различных странах
- •Общая система маркировки сталей
- •Маркировка сталей по европейским стандартам
- •Маркировка сталей по физико-механическим свойствам
- •Маркировка сталей в Германии
- •Цифровая маркировка (номер материала)
- •Маркировка с помощью букв и цифр (марка стали)
- •Маркировка углеродистых качественных сталей.
- •Маркировка качественных низколегированных сталей
- •Маркировка высоколегированных сталей
- •Маркировка сталей в Англии
- •Маркировка сталей в сша
- •Маркировка сталей в Японии
- •Примеси в стали
- •Марганец
- •Кремний
- •Кислород
- •Водород
- •На полиморфизм железа,
- •Легирующие элементы при введении в сталь могут находиться в виде твердых растворов или образовывать следующие фазы:
- •Влияние легирующих элементов на критические точки и свойства стали
- •Механизмы упрочнения стали
- •Влияние легирования на механические свойства феррита Влияние легирования на распад мартенсита при отпуске Влияние легирования на механические свойства феррита
- •Влияние легирования на распад мартенсита при отпуске
- •Принципы легирования улучшаемой стали Термическая обработка
- •Определяющие свойства
- •Принципы легирования улучшаемой стали
- •Термическая обработка
- •Прокаливаемость стали
- •Нагрев при закалке
- •1. Углеродистые качественные стали
- •3. Низколегированные безникелевые стали
- •4. Никелевые стали
- •5. Сложнолегированные стали
- •Низколегированные высокопрочные стали
- •Высокопрочные стали с пластичностью, наведенной превращением
- •Низколегированные высокопрочные стали
- •Легирование высокопрочных сталей
- •Высокопрочные стали с пластичностью, наведенной превращением
- •Легирование цементуемой стали Группы цементуемых сталей
- •Легирование цементуемой стали
- •Термическая обработка мартенситно-стареющей стали
- •Характеристика Стали общего назначения Стали специального назначения
- •Стали общего назначения
- •Стали специального назначения
- •Требования к эксплуатационным свойствам
- •Требования к эксплуатационным свойствам
- •Легирование и термическая обработка
- •Особенности термической обработки.
- •Термическая обработка. Характеристика инструментальных сталей
- •Стали общего назначения
- •Особенности термической обработки
- •Составы быстрорежущих сталей
- •Термическая обработка
- •Особенности термической обработки
- •3.14.3. Стали высокой износостойкости с повышенной теплостойкостью
- •Штамповые стали для горячего деформирования
- •Стали умеренной теплостойкости и повышенной вязкости
- •Стали повышенной и высокой теплостойкости
- •Стали повышенной и высокой теплостойкости
- •Дополнительная литература:
Влияние легирующих элементов на критические точки и свойства стали
Легирующие элементы значительно влияют на температурное положение критических точек в сталях. В частности, они могут интенсивно смещать точку Ас1. Подобное влияние легирующих элементов связано с двумя факторами.
|
Рис. 78. Влияние легирующих элементов на положение критической точки Ас1 (а) и содержание углерода в эвтектоиде (б)
|
Некарбидообразующие элементы, растворяясь в цементите, несколько понижают температуру диссоциации карбида. При этом никель и марганец понижают температуру -перехода и, следовательно, снижают точку Ас1. Своеобразно влияние хрома на точку Ас1. Он до 12–13 % сравнительно слабо повышает точку Ас1, а при содержании его более 14 % наблюдается резкое повышение температуры Ас1. Подобное влияние объясняется тем, что при содержании хрома до 12 – 13 % он понижает температуру -перехода, а наблюдаемое при этих содержаниях хрома повышение точки Ас1 обусловлено более сильным влиянием диссоциации эвтектоидных карбидов при этих температурах. Закономерности влияния элементов на критические точки в основном сохраняются и в сталях, содержащих одновременно несколько легирующих элементов.
Легирующие элементы значительно влияют и на положение эвтектоидной точки S (рис. 79), и на предельную концентрацию углерода в аустените (точку Е). Некарбидообразующие элементы (никель, кобальт, кремний), растворяясь в феррите и замещая часть атомов железа в его решетке, тем самым уменьшают содержание железа в эвтектоиде и смещают точку S в сторону меньших концентраций углерода. Аналогично влияют и карбидообразующие элементы, которые в большом количестве растворяются в феррите. Их карбиды участвуют в образовании эвтектоида (например, Мп и Сr). Такие элементы, как Мо и W, сначала уменьшают, а затем увеличивают содержание углерода в эвтектоиде.
Имеются сведения, что сильные карбидообразующие элементы Тi, Nb и V, незначительно растворяющиеся в феррите и образующие стойкие карбиды, которые не участвуют в образовании эвтектоида, уменьшают количество эвтектоида в стали и увеличивают содержание углерода в эвтектоиде, т. е. смещают точку S в сторону больших концентраций углерода. В то же время, если Тi, Nb и V растворены в аустените, то они снижают содержание углерода в эвтектоиде.
Большинство легирующих элементов понижает предел растворимости углерода в -железе и, следовательно, смещает точку Е на диаграмме Fе–Fе3С в сторону меньших концентраций углерода.
|
Рис. 79. Изменение содержания углерода в эвтектоиде и эвтектике при легировании
|
Элементы, которые только растворяются в феррите или цементите, не образуя специальных карбидов, оказывают лишь количественное влияние на процессы превращения (изменяют длительность инкубационного периода). Они или ускоряют превращение (к таким элементам относится только кобальт), или замедляют его (большинство элементов, в том числе марганец, никель, медь и др.).
|
Рис. 80. Диаграммы изотермического превращения аустенита: доэвтектоидной (а), эвтектоидной (б) и заэвтектоидной (с) углеродистой стали
|
Таким образом, в сталях, легированных карбидообразующими элементами (хром, молибден, вольфрам), наблюдаются два максимума скорости изотермического распада аустенита, разделенных областью высокой устойчивости переохлажденного аустенита. Изотермический распад аустенита имеет два явно выраженных интервала превращений – превращение в пластинчатые кристаллиты (перлитное превращение) и превращение в игольчатые кристаллиты (бейнитные превращения).
Диаграммы изотермического распада представлены на рис. 80 и 81. Видно, что увеличение содержания углерода понижает температуры начала и конца мартенситного превращения; форма кривых начала и конца перлитного превращения принципиально не изменяется.
В легированных сталях в зависимости от положения линий начала перлитного превращения и точки Мн можно получить стали перлитного, мартенситного, бейнитного или аустенитного классов. Увеличение инкубационного периода при легировании позволяет создавать стали с высокой прокаливаемостью.
Рис. 81. Схемы диаграмм изотермического
распада аустенита, легированного
карбидообразующими элементами: а –
малоуглеродистая сталь; б –
высокоуглеродистая сталь
Легирующие элементы не влияют на кинетику мартенситного превращения, которая, по-видимому, похожа во всех сталях. Их влияние сказывается исключительно на положении температурного интервала мартенситного превращения, а это в свою очередь отражается и на количестве остаточного аустенита, которое фиксируется в закаленной стали.
Рис. 82. Влияние ЛЭ на Мн
и содержание остаточного аустенита в
стали с 1 % углерода
Некоторые элементы повышают мартенситную точку и уменьшают количество остаточного аустенита (алюминий, кобальт), другие не влияют на нее (кремний), но большинство снижает мартенситную точку и увеличивает количество остаточного аустенита (рис. 82). Из диаграммы видно, что 5% Мn снижает мартенситную точку до 0 оС, следовательно, при таком (или большем) содержании этого легирующего элемента можно зафиксировать аустенитное состояние посредством быстрого охлаждения..
Л 5.3. Влияние легирования на вязкость, прочность, Тх , размер зерна.