
- •Статистика. Курс лекций
- •Раздел I. Описательная статистика
- •Тема 1. Статистика как наука. Методы статистики
- •1. Общее понятие статистики. Предмет статистики.
- •2. Статистические совокупности. Признаки и их классификация.
- •3.Статистическое исследование. Методы статистики
- •4. Статистическое наблюдение. Виды статистического наблюдения.
- •Тема 2. Статистические показатели. Представление статистических
- •1. Сущность и значение статистических показателей. Показатель и его атрибуты
- •2. Общие принципы построения относительных статистических показателей
- •3. Роль и значение статистических показателей в управлении экономическими и социальными процессами
- •4. Представление статистических данных: таблицы и графики Статистические таблицы
- •Распределение занятого населения России по секторам экономики (млн. Человек)
- •Распределение населения России по основным возрастным группам по регионам рф на 1 января 1996 г. (%)
- •Тема 3. Статистическая группировка
- •1. Значение и сущность группировки. Построение группировки
- •2. Виды группировок
- •Группировка населения по размеру среднедушевого дохода в апреле 1994 г.
- •Группировка коммерческих банков России по сумме активов баланса (данные условные)
- •Группировка семей России по месту проживания и числу детей в 1989 г. (по материалам переписи населения)
- •3. Многомерные группировки
- •Тема 4. Средние величины
- •1. Средняя арифметическая величина. Свойства средней арифметической величины
- •Виды средней арифметической
- •Свойства арифметической средней
- •2. Другие формы средних величин
- •Средняя квадратическая величина
- •Средняя геометрическая величина
- •Средняя гармоническая величина
- •Раздел II. Аналитическая статистика
- •Тема 5. Вариация массовых явлений. Показатели вариации
- •1. Вариации массовых явлений. Построение вариационного ряда
- •2. Структурные характеристики вариационного ряда. Показатели размера и интенсивности вариации.
- •3. Показатели размера и интенсивности вариации.
- •1) Относительный размах вариации ρ:
- •2) Относительное отклонение по модулю m
- •4. Закономерности распределения.
- •Тема 6. Выборочное наблюдение.
- •1. Способы формирования выборочной совокупности. Виды выборки.
- •2. Ошибка выборки
- •3. Определение необходимой численности выборки.
- •4. Малая выборка
- •Тема 7. Статистическое изучение взаимосвязи социально-экономических явлений
- •1. Понятие о статистической и корреляционной связи
- •2. Парная регрессия на основе метода наименьших квадратов и метода группировок.
- •3. Множественная (многофакторная) регрессия.
- •4. Оценка тесноты связи.
- •5. Проверка значимости параметров регрессии.
- •Тема 8.Статистическое изучение динамики социально-экономических явлений.
- •1. Понятие и классификация рядов динамики. Показатели изменения уровней ряда динамики.
- •2. Методы выявления типа тенденции динамики
- •3. Методика измерения параметров тренда
- •4. Методика изучения и показатели колеблемости
- •5. Прогнозирование на основе тренда
- •Тема 9. Экономические индексы
- •1. Понятие и классификация экономических индексов
- •2. Индивидуальные и общие индексы
- •3. Агрегатные и средние индексы
- •4. Индексы структурных сдвигов и пространственно-территориального сопоставления. Индексы структурных сдвигов
- •Индексы пространственно-территориального сопоставления
- •5. Экономические индексы Ласпейреса, Пааше, Фишера. Индексы-дефляторы.
- •Границы и условия применения индексного метода
5. Проверка значимости параметров регрессии.
Проверка статистической значимости всех параметров, полученных в процессе корреляционно-регрессионного анализа, основывается на предположении, что все эти параметры, а точнее, их значения являются конкретными числовыми реализациями некоторых случайных величин. И для каждого конкретного значения параметра можно оценить как вероятность превышения найденной величины, так и вероятность того, что в процессе расчета могли получить меньшее значение параметра. Здесь используется принцип практической невозможности маловероятных событий. Если найденная величина параметра все-таки попала в зону маловероятных значений, то с достаточной для практики строгостью данное значение параметра можно считать неслучайным или статистически значимым. Если же конкретное значение параметра попадает в область весьма вероятных значений, то это говорит о случайности вычисленного параметра,, его статистической незначимости - доверие к такому параметру уменьшается. Проверка значимости сводится к сравнению полученного значения с тем числом, которое отделяет область маловероятных значений от весьма вероятных.
В настоящее время большинство расчетов по корреляционно-регрессионному анализу выполняется с помощью пакетов прикладных программ по статистике. Соответствующие пакеты обеспечивают такую проверку, сообщая граничную величину t-критерия Стьюдента и (или) F-критерия Фишера.
Для парной регрессии значения критериев определяются следующим образом.
Значимость линейного коэффициента корреляции r и параметров a0 и а1 в уравнении Y=a0+a1X оценивается на основе t-критерия Стьюдента
значимость параметра а0 определяется из уравнения
Для оценки значимости уравнения регрессии в целом, особенно при нелинейных зависимостях, используют F-критерий:
,
где
и носит название индекса детерминации.
где m - число параметров уравнения регрессии (число линейных уравнений, по которым определялись параметры уравнения регрессии)
Расчетное значение t-критерия сравнивается по абсолютной величине с граничным (табличным) значением распределения Стьюдента при (n-m) степенях свободы и заданном уровне значимости (чаще всего принимают α=0,01 или α=0,05). Если фактическое значение t-критерия больше табличного, то данный параметр считается значимым. Аналогично сравнивается с табличным расчетное значение F-критерия при заданном уровне значимости α и k1 = n-m степенях свободы.
При проверке значимости эмпирического корреляционного отношения m - число групп, выделенных в процессе группировки по факторному признаку, а вместо R2 в формулу F-критерия подставляют величину η2.
При анализе уравнений множественной регрессии - линейной и нелинейной - возникает задача отбора наиболее значимых признаков-факторов Х. Признак Х считается значимым, если соответствующий параметр регрессии по абсолютному значению настолько отклонился от своего предполагаемого нулевого среднего уровня, что произошло событие редкое, маловероятное. В этом случае и параметр ai и признак Хi признается статистически значимым. Степень отклонения оценивается t-критерием, т.е.
,
i=0,1,2,…,k
где аi - численное значение i-го параметра уравнения множественной регрессии; σi - среднее квадратическое отклонение параметра аi (как случайной величины) относительно нулевого уровня. Наиболее трудоемкой в техническом отношении оказывается оценка σi , если расчеты производятся с помощью пакетов прикладных программ, то это значение высчитывается автоматически, после чего они сравниваются с табличным уровнем t при определенной значимости α и (n-m) степенях свободы, где n - число наблюдений, а m - число параметров уравнения регрессии.