
- •Статистика. Курс лекций
- •Раздел I. Описательная статистика
- •Тема 1. Статистика как наука. Методы статистики
- •1. Общее понятие статистики. Предмет статистики.
- •2. Статистические совокупности. Признаки и их классификация.
- •3.Статистическое исследование. Методы статистики
- •4. Статистическое наблюдение. Виды статистического наблюдения.
- •Тема 2. Статистические показатели. Представление статистических
- •1. Сущность и значение статистических показателей. Показатель и его атрибуты
- •2. Общие принципы построения относительных статистических показателей
- •3. Роль и значение статистических показателей в управлении экономическими и социальными процессами
- •4. Представление статистических данных: таблицы и графики Статистические таблицы
- •Распределение занятого населения России по секторам экономики (млн. Человек)
- •Распределение населения России по основным возрастным группам по регионам рф на 1 января 1996 г. (%)
- •Тема 3. Статистическая группировка
- •1. Значение и сущность группировки. Построение группировки
- •2. Виды группировок
- •Группировка населения по размеру среднедушевого дохода в апреле 1994 г.
- •Группировка коммерческих банков России по сумме активов баланса (данные условные)
- •Группировка семей России по месту проживания и числу детей в 1989 г. (по материалам переписи населения)
- •3. Многомерные группировки
- •Тема 4. Средние величины
- •1. Средняя арифметическая величина. Свойства средней арифметической величины
- •Виды средней арифметической
- •Свойства арифметической средней
- •2. Другие формы средних величин
- •Средняя квадратическая величина
- •Средняя геометрическая величина
- •Средняя гармоническая величина
- •Раздел II. Аналитическая статистика
- •Тема 5. Вариация массовых явлений. Показатели вариации
- •1. Вариации массовых явлений. Построение вариационного ряда
- •2. Структурные характеристики вариационного ряда. Показатели размера и интенсивности вариации.
- •3. Показатели размера и интенсивности вариации.
- •1) Относительный размах вариации ρ:
- •2) Относительное отклонение по модулю m
- •4. Закономерности распределения.
- •Тема 6. Выборочное наблюдение.
- •1. Способы формирования выборочной совокупности. Виды выборки.
- •2. Ошибка выборки
- •3. Определение необходимой численности выборки.
- •4. Малая выборка
- •Тема 7. Статистическое изучение взаимосвязи социально-экономических явлений
- •1. Понятие о статистической и корреляционной связи
- •2. Парная регрессия на основе метода наименьших квадратов и метода группировок.
- •3. Множественная (многофакторная) регрессия.
- •4. Оценка тесноты связи.
- •5. Проверка значимости параметров регрессии.
- •Тема 8.Статистическое изучение динамики социально-экономических явлений.
- •1. Понятие и классификация рядов динамики. Показатели изменения уровней ряда динамики.
- •2. Методы выявления типа тенденции динамики
- •3. Методика измерения параметров тренда
- •4. Методика изучения и показатели колеблемости
- •5. Прогнозирование на основе тренда
- •Тема 9. Экономические индексы
- •1. Понятие и классификация экономических индексов
- •2. Индивидуальные и общие индексы
- •3. Агрегатные и средние индексы
- •4. Индексы структурных сдвигов и пространственно-территориального сопоставления. Индексы структурных сдвигов
- •Индексы пространственно-территориального сопоставления
- •5. Экономические индексы Ласпейреса, Пааше, Фишера. Индексы-дефляторы.
- •Границы и условия применения индексного метода
4. Оценка тесноты связи.
Измерение тесноты и направления связи между признаками предлагает определение меры соответствия вариации результативного признака от одного (при изучении парных зависимостей) или нескольких (множественных) факторов.
Линейный коэффициент корреляции был впервые введен в начале 90-х гг. 19 века Пирсоном, Эджвортом и Велдоном и характеризует тесноту и направление связи между двумя коррелируемыми признаками в случае наличия между ними линейной зависимости.
В расчете этого
коэффициента учитывается величина
отклонений индивидуальных значений
признаков от средней величины:
и
.
Однако, сопоставляемые полученные
величины могут быть выражены в различных
единицах измерения или могут различны
по величине. Поэтому сравнивают
нормированные отклонения:
и
Для получения обобщающей характеристики тесноты связи берут среднее произведение нормированных отклонений:
(1)
Формула линейного коэффициента корреляции может быть представлена в следующем виде:
Используя математические свойства средней, получаем:
(2)
Преобразования данной формулы позволяют получить следующую формулу линейного коэффициента корреляции:
или
(3)
где n - число наблюдений
Производя расчет по итоговым значениям исходных переменных, линейный коэффициент корреляции можно вычислить по формуле:
(4)
или
(5)
Коэффициент корреляции может быть выражен через дисперсии слагаемых:
(6)
Формулы (1), (2), (2) применяются при изучении совокупностей малого объема (n<=20:30).
Между линейным коэффициентом корреляции и коэффициентом регрессии существует определенная зависимость, выражаемая формулой:
для парной
корреляции -
или
, а коэффициент
для многофакторной
корреляции -
где аi -
коэффициент регрессии в уравнении
связи, σхi -
среднее квадратическое отклонение
соответствующего, статистически
существенного, факторного признака.
Линейный коэффициент корреляции имеет большое значение при исследовании социально-экономических явлений и процессов, распределение которых близко к нормальному. Линейный коэффициент корреляции изменяется в пределах от -1 до 1. При этом оценку линейного коэффициента корреляции можно представить в таблице:
Значение линейного коэффициента корреляции |
Характер связи |
Интерпретация связи |
r=0 |
Отсутствует |
- |
0 < r < 1 |
Прямая |
С увеличением Х увеличивается У |
-1 < r < 0 |
Обратная |
С увеличением Х уменьшается У, и наоборот |
r=1 |
Функциональная |
Каждому значению факторного признака строго соответствует одно значение результативного признака |
По степени тесноты связи различают количественные критерии оценки тесноты связи на основе шкалы Чеддока:
Величина коэффициента корреляции при наличии |
Характер связи |
||
прямой связи |
обратной связи |
||
от 0,1 до 0,3 |
от -0,3 до -0,1 |
практически отсутствует |
|
от 0,3 до 0,5 |
от -0,5 до -0,3 |
слабая |
|
от 0,5 до 0,7 |
от -0,7 до -0,5 |
умеренная |
|
от 0,7 до 0,9 |
от -0,5 до -0,7 |
сильная |
|
0,9 до 0,99 |
от -0,99 до -0,9 |
весьма сильная |
В случае наличия линейной и нелинейной зависимости между двумя признаками для измерения тесноты связи применяют корреляционное отношение. Различают эмпирическое и теоретическое корреляционное отношение.
Эмпирическое корреляционное отношение рассчитывается по данным группировки, когда δ2 характеризует отклонения групповых средних результативного показателя от общей средней:
(7)
где η - корреляционное отношение;
σ2 - общая дисперсия
- средняя из частных (внутригрупповых)
дисперсий;
- межгрупповая дисперсия (дисперсия
групповых средних)
Теоретическое корреляционное отношение определяется по формуле:
(8)
где
- дисперсия выровненных значений
результативного признака, т.е. рассчитанных
по уравнению регрессии;
σ2 - дисперсия эмпирических (фактических) значений результативного признака.
Так как
и
Тогда
(9)
В основе расчета корреляционного отношения лежит правило сложения дисперсий, при этом средняя из межгрупповых дисперсий отражает вариацию результативного признака У под влиянием всех неучтенных при анализе факторов, т.е. носит остаточный характер. Поэтому её часто называют остаточной дисперсией.
Отсюда формула корреляционного отношения принимает вид (выражаем межгрупповую дисперсию через общую и среднюю из внутригрупповых):
(10)
Корреляционное отношение изменяется в пределах от 0 до 1 и анализ степени тесноты связи полностью соответствует линейному коэффициенту корреляции. Теоретическое корреляционное отношение также может выражаться по формуле:
Корреляционное отношение является более универсальным показателем тесноты связи сравнению с линейным коэффициентом корреляции.
Для измерения тесноты связи при множественной корреляционной зависимости, т.е. при исследовании трех и более признаков одновременно, вычисляются множественный или совокупный и частные коэффициенты корреляции.
Множественный коэффициент корреляции рассчитывается при наличии линейной связи между результативным и несколькими факторными признаками, а также между каждой парой факторных признаков.
В случае оценки связи между результативным (У) и двумя факторными признаками (х1 и х2) множественный коэффициент корреляции определяют по формуле:
(11)
где r - парные коэффициенты корреляции между признаками
Множественный коэффициент корреляции можно рассчитать, используя парные коэффициенты rij и коэффициенты регрессии в стандартизованном масштабе (βi)
где ryxi - парные коэффициенты;
βi - коэффициенты в стандартизованном масштабе.
Множественный коэффициент корреляции изменяется в пределах от 0 до 1 и по определению положителен.
Приближение R к 1 свидетельствует о сильной зависимости между признаками.
Чтобы оценить общую вариацию результативного признака в зависимости от факторных признаков, величина коэффициента множественной корреляции корректируется на основании следующего выражения:
где
- скорректированное значение;
n- число наблюдений;
k - число факторных признаков.
Корректировка не производится при условии, если
Проверка значимости коэффициента множественной корреляции осуществляется на основании F-критерия Фишера-Снедекора
Частные коэффициенты корреляции характеризуют степень тесноты связи между двумя признаками х1 и х2 при фиксированном значении других (к‑2) факторных признаков, т.е. когда влияние х3 и других исключается и оценивается связь между х1 и х2 в "чистом виде".
Коэффициент, в котором исключается влияние только одного факторного признака, называется коэффициентом частной корреляции первого порядка. В общем виде коэффициент корреляции первого порядка выражается так:
В случае зависимости Y от двух факторных признаков х1 и х2 коэффициент частной корреляции следующий:
В первом случае исключено влияние факторного признака х2 , во втором - х1. Значения парного и частного коэффициентов корреляции отличаются друг от друга, так как парный коэффициент характеризует связь между двумя признаками без учета влияния других признаков, а частный учитывает наличие и влияние других факторов.
Кроме перечисленных выше коэффициентов для измерения тесноты применяются коэффициент детерминации. Он равен квадрату корреляционного отношения и обозначается буквой η2
В числителе формулы стоит сумма квадратов отклонений фактических значений признака у от индивидуальных расчетных показателей. Эта сумма не может равняться нулю, если связь не является функциональной. При неверной формуле или ошибки в расчетах возрастают расхождения фактических и расчетных значений, и корреляционное отношение снижается.
С целью расширения возможностей экономического анализа используются частные коэффициенты эластичности, определяемые по формуле:
где
- среднее значение соответствующего
факторного признака;
- среднее значение результативного
признака;
аi - коэффициент регрессии при соответствующем факторном признаке.
Коэффициент эластичности показывает, на сколько в среднем изменится значение результативного признака при изменении факторного признака на 1%.
Частный коэффициент детерминации показывает на сколько процентов вариация результативного признака объясняется вариацией i-того признака, входящего в множественное уравнение регрессии и определяется по формуле:
где ryxi - парный коэффициент корреляции между результативным и i-м факторным признаками;
βхi - соответствующий коэффициент уравнения множественной регрессии в стандартизованном виде.
Множественный коэффициент детерминации (R2) представляет собой множественный коэффициент корреляции в квадрате и показывает какая доля вариации результативного признака обусловлена изменением факторных признаков, входящих в многофакторную регрессионную модель.
Для более точной оценки влияния каждого факторного признака на моделируемый используют Q-коэффициент, определяемый по формуле:
где
- коэффициент вариации соответствующего
факторного признака.
Интерпретировать корреляционные показатели строго следует лишь в терминах вариации отклонений от средней величины. Если же необходимо измерение изменений признака во времени, то метод корреляционно-регрессионного анализа требует значительного изменения. Модели на основе этого метода обладают слабыми экстраполяционными свойствами и не отражают тенденции развития и пригодны лишь для построения краткосрочных прогнозов.