
- •Статистика. Курс лекций
- •Раздел I. Описательная статистика
- •Тема 1. Статистика как наука. Методы статистики
- •1. Общее понятие статистики. Предмет статистики.
- •2. Статистические совокупности. Признаки и их классификация.
- •3.Статистическое исследование. Методы статистики
- •4. Статистическое наблюдение. Виды статистического наблюдения.
- •Тема 2. Статистические показатели. Представление статистических
- •1. Сущность и значение статистических показателей. Показатель и его атрибуты
- •2. Общие принципы построения относительных статистических показателей
- •3. Роль и значение статистических показателей в управлении экономическими и социальными процессами
- •4. Представление статистических данных: таблицы и графики Статистические таблицы
- •Распределение занятого населения России по секторам экономики (млн. Человек)
- •Распределение населения России по основным возрастным группам по регионам рф на 1 января 1996 г. (%)
- •Тема 3. Статистическая группировка
- •1. Значение и сущность группировки. Построение группировки
- •2. Виды группировок
- •Группировка населения по размеру среднедушевого дохода в апреле 1994 г.
- •Группировка коммерческих банков России по сумме активов баланса (данные условные)
- •Группировка семей России по месту проживания и числу детей в 1989 г. (по материалам переписи населения)
- •3. Многомерные группировки
- •Тема 4. Средние величины
- •1. Средняя арифметическая величина. Свойства средней арифметической величины
- •Виды средней арифметической
- •Свойства арифметической средней
- •2. Другие формы средних величин
- •Средняя квадратическая величина
- •Средняя геометрическая величина
- •Средняя гармоническая величина
- •Раздел II. Аналитическая статистика
- •Тема 5. Вариация массовых явлений. Показатели вариации
- •1. Вариации массовых явлений. Построение вариационного ряда
- •2. Структурные характеристики вариационного ряда. Показатели размера и интенсивности вариации.
- •3. Показатели размера и интенсивности вариации.
- •1) Относительный размах вариации ρ:
- •2) Относительное отклонение по модулю m
- •4. Закономерности распределения.
- •Тема 6. Выборочное наблюдение.
- •1. Способы формирования выборочной совокупности. Виды выборки.
- •2. Ошибка выборки
- •3. Определение необходимой численности выборки.
- •4. Малая выборка
- •Тема 7. Статистическое изучение взаимосвязи социально-экономических явлений
- •1. Понятие о статистической и корреляционной связи
- •2. Парная регрессия на основе метода наименьших квадратов и метода группировок.
- •3. Множественная (многофакторная) регрессия.
- •4. Оценка тесноты связи.
- •5. Проверка значимости параметров регрессии.
- •Тема 8.Статистическое изучение динамики социально-экономических явлений.
- •1. Понятие и классификация рядов динамики. Показатели изменения уровней ряда динамики.
- •2. Методы выявления типа тенденции динамики
- •3. Методика измерения параметров тренда
- •4. Методика изучения и показатели колеблемости
- •5. Прогнозирование на основе тренда
- •Тема 9. Экономические индексы
- •1. Понятие и классификация экономических индексов
- •2. Индивидуальные и общие индексы
- •3. Агрегатные и средние индексы
- •4. Индексы структурных сдвигов и пространственно-территориального сопоставления. Индексы структурных сдвигов
- •Индексы пространственно-территориального сопоставления
- •5. Экономические индексы Ласпейреса, Пааше, Фишера. Индексы-дефляторы.
- •Границы и условия применения индексного метода
3. Многомерные группировки
Группировка, осуществляемая одновременно по комплексу признаков называется многомерной. Характеристика одной и той же стороны изучаемого явления может быть дана с помощью набора признаков. Например, для характеристики технического уровня развития предприятий может быть использованы следующие показатели: удельный вес активной части промышленно-производственных основных фондов, удельный вес автоматических машин и оборудования в составе рабочих машин и оборудования, электровооруженность труда, машиновооруженность рабочих, коэффициент обновления машин и оборудования.
Характеризуя таким образом каждую единицу совокупности набором признаков, можно рассматривать эту единицу как точку в m-мерном пространстве, а задача многомерной группировки будет состоять в выделении точек, составляющих однородные группы единиц. Исходные данные для задачи многомерной группировки представляют в виде матрицы «объект-признак». Строками ее являются значения признаков, характеризующих соответствующий объект, а столбцами – значения каждого признака для рассматриваемой совокупности объектов.
Мерой «сходства» между единицами может служить различные критерии. В зависимости от выбранного критерия и существуют различные виды многомерной группировки.
Выделяют 3 типа мер сходства:
1. коэффициент подобия;
2. коэффициент связи;
3. показатели расстояния.
Меры первого и второго типов называют мерами близости: чем больше их величины, тем ближе объекты к друг другу.
Обратное положение с показателями расстояния: чем больше их величины, тем больше различия между объектами.
Меры сходства могут определяться как между объектами, так и между признаками.
Для измерения степени близости между парами объектов (i и j) используют коэффициенты подобия S. Один из наиболее простых способов рассчитать этот коэффициент по формуле:
, где Рij – число
совпадающих признаков у объектов i и j,
а m – общее число признаков, по которым
осуществляется сравнение. Очевидно,
что 0
1.
Часто в качестве мер сходства используют коэффициент корреляции – либо как измеритель силы связи между объектами (строками матрицы), либо как измерители связи признаков (столбцами матрицами).
Если признаки не поддаются точной количественной оценке, то мерами их связи служат коэффициенты ранговой корреляции.
Во многих
случаях роль меры сходства играет
функция расстояния. Для сопоставимости
статистических показателей расстояния
определяют по статистическим
стандартизированным данным, т.е. заменяют
первичные данные данными, вычисляемыми
по формуле:
Чаще всего принимаются следующие меры расстояния между объектами:
1. хеммингово расстояние:
2. евклидово расстояние:
где xil – значение l-го признака у объекта i
xjl – значение l-го признака у объекта j
Евклидово расстояние не учитывает неравнозначность осей пространства. При ненормированных осях возможен случай, когда 2 объекта, сильно различающихся только по одному признаку, окажутся далекими в евклидовом пространстве. Поэтому часто вводят взвешенное евклидово расстояние, где подбором весов wl пытаются нормировать оси пространства:
,
где
Обычно величину wl - обратно пропорциональна среднему квадратическому отклонению σ значений признака хl.
3. расстояние Махаланобиса:
где Xi=( Xi1, … , Xim) – строки значений признаков для объекта i
Xj=( Xj1, … , Xjm) – строки значений признаков для объекта j
R-1 – матрица, обратная матрице парных линейных коэффициентов корреляции признаков.
Применение методов многомерной группировки связано с большой вычислительной работой и осуществляется с помощью специальных алгоритмов, реализованных в различных статистических пакетах прикладных программ.
С помощью различных методов (дендроидов, метода шаров, корреляционных плеяд, многомерной средней, кластерного анализа) осуществляется формирование групп, в которых единицы совокупности объединяются на основании близости по всему комплексу признаков.