
- •1.Трансформаторы тока в схемах релейной защиты.
- •2. Расчет выдержек времени мтз
- •3 Выбор тока срабатывания максимальной токовой защиты.
- •4 Токовая отсечка на линии с односторонним питанием.
- •6 Токовая защита со ступенчатой характеристикой выдержки времени
- •7. Максимальная токовая направленная защита (принцип действия, принципиальная электрическая схема, расчет выдержек времени).
- •8. Продольная дифференциальная защита. Расчет тока небаланса в дифференциальной защите. Продольные дифференциальные токовые защиты.
- •Ток небаланса в неустановившемся режиме (кз).
- •Методы отстройки от тока небаланса.
- •37.Потребители электрической энергии: определение, классификация по надежности, режимам работы, напряжению мощности и роду тока.
- •38.Методы проектирования осветительной сети.
- •9.Трансформаторы напряжения в схемах релейной защиты: устройство, схема замещения, цель применения
- •10.Поперечная дифференциальная токовая защита (принцип действия, схема, расчет и оценка защиты).
- •11. Схема и расчет максимальной токовой защиты с блокировкой минимального напряжения
- •12. Поперечная дифференциальная токовая направленная защита (принцип действия, схема и особенности работы). Поперечная дифференциальная токовая направленная защита (дтнз)
- •Расчет уставок пдтнз
- •13. Схема соединения трансформаторов тока и обмоток реле в полную звезду. Особенности работы релейной зашиты по этой схеме.
- •14.Двухфазная двухрелейная и трехрелейная схемы соединения трансформаторов тока и обмоток реле в неполную звезду. Особенности работы релейной защиты по этой схеме.
- •15.Схемы соединения с двумя трансформаторами тока и одним реле, включенным на разность токов двух фаз. Схема соединения трансформаторов тока в треугольник, а обмоток реле - в звезду.
- •Газовая защита
- •17.Токовая защита трансформаторов от многофазных кз со ступенчатой характеристикой выдержки времени.
- •18. Защита трансформаторов 6-10 / 0,4 кВ от кз на землю
- •22. Дифференциальная токовая отсечка трансформатора: схема и расчет. Общая оценка дифференциальных защит трансформаторов.
- •23.Трансформаторы напряжения в схемах релейной защиты: векторная диаграмма, погрешность.
- •24.Схемы соединения обмоток трансформаторов напряжения.
- •25.Дифференциальная защита трансформатора с реле рнт-565 (схема, расчет).
- •26.Дифференциальная защита трансформатора с торможением (схема, расчет).
- •27. Причины отклонения частоты в энергосистеме. Автоматическая частотная разгрузка: назначение, требования, расчет.
- •28.Схема устройства авр на переменном оперативном токе в установках ниже 1000 в. Схемы устройств авр в установках выше 1000 в. Авр двигателей.
- •29.Основные требования к устройствам апв и расчет их параметров. Схемы устройств на переменном и выпрямительном оперативном токе в установках высокого напряжения.
- •Принципы сравнения абсолютных значений двух электрических величин.
- •Система с магнитным торможением.
- •31.Дифференциальное реле с механическим торможением. Применение и устройство насыщенного трансформатора тока в дифференциальной защите Система с механическим торможением.
- •32.Фильтры симметричных составляющих токов и напряжений в релейной защите.
- •34.Совместное действие устройств апв и токовой защиты. Расчет тока срабатывания поперечной дифференциальной токовой направленной защиты.
- •Расчет уставок пдтнз
- •36. Измерительные трансформаторы тока и напряжения
- •37.Потребители электрической энергии: определение, классификация по надежности, режимам работы, напряжению мощности и роду тока.
- •38.Методы проектирования осветительной сети.
- •Типовые дефекты в строительной части и способы их устранения.
- •83. Монтаж двигателей
- •84.Монтаж пускорегулирующих аппаратов.
- •85.Монтаж трансформаторных подстанций и распределительных устройств.
- •86.Эксплуатация асинхронного двигателя.
- •87.Ремонт конденсаторных установок.
- •88.Ремонт кабельных линий
- •89.Ремонт трансформаторов.
- •90.Эксплуатация трансформаторов.
9.Трансформаторы напряжения в схемах релейной защиты: устройство, схема замещения, цель применения
Трансформатор напряжения в схемах РЗ.
U1=U2=U1/nH
(*) U2=U1/nH—∆U
(**)
∆U=I’номZ’1+I2(Z’1+Z2) (***)
при I2=0 ∆U=мин – х.х. при I2=мах ∆U=мах – к.з.
-
∆U
0,2
0,5
1
3
δ
10’
20’
40’
_
(*)
–для
идеального ТН
(**) – для реального ТН
чем больше ∆U, тем хуже трансформация.
ТН так же как и ТТ обеспечивает изоляцию цепей вторичной коммутации от ВН и позволяют независимо от первичного напряжения получить стандартную величину вторичного напряжения = 100В. Принцип действия такой же как и у силового. В идеальном ТН мы имеем (*), т.е. вторичное =первичному. Однако за счет падения напряжения мы имеем (**) – в реальном ТН. Из Т-образной схемы замещения следует (***). Т.о. видно что для уменьшения погрешности ТН необходимо снижать сопротивление обмоток Z1 и Z2, а также Iнам и вторичный ток. При токе вторичном равном нулю – режим х.х., при максимальном вторичном токе – режим КЗ. U2=U’1 – самый благоприятный для ТН (режим х.х.). В ТТ – режим к.з. Т.о. имеем две погрешности:
Погрешность по величине U2 - ∆U
Погрешность по углу – угол между векторами U’1 и U2 (несовпадение по фазе). Для снижения погрешности по углу стремятся к х.х., или применяют специальные компенсационные обмотки.
Существуют четыре класса точности : 0,2; 0,5; 1; 3.
В данном классе точности ТН работает если отдает и потребляет полную мощность. Существуют так называемые предельные мощности ТН – мощность нагрева. Она в 6 – 9 раз больше номинальной.
Векторная диаграмма ТН.
Магнитный поток Ф отстаёт от U2 на 90°. Угол α определяется потерями в стали сердечника, φ – определяется соотношением активного и индуктивного сопротивления вторичной обмотки и нагрузки. ТН бывает одно и трёх фазный (1ф. – до 500 кВ; 3ф. – до 18 кВ). Из ТН составляют фильтры нулевой и обратной последовательности. Из (**) следует:
U2+∆U=U1
Включение однофазного ТН.
Заземление в целях защиты персонала. Плавкие предохранители на стороне ВН TV применяются до 35 кВ включительно. Если напряжение более 500 В, то между предохранителями и системой – разъединитель.
10.Поперечная дифференциальная токовая защита (принцип действия, схема, расчет и оценка защиты).
Ip= I2I-I2II≈Iнб (K1)
Ip= I2I-I2II=Ip (K2)
Ip>Icp
Icp>Iнбmaxрасч
Icp=kотсIнбmaxрасч
Ка=1
КаКодн=1
В мертвой зоне(штриховка на рисунке) защита работать на будет(Ip<Icp) согласно ПУЭ она должна быть меньше 10%.
Длина мертвой зоны определяется.
При К2 отключается Q1 затем в бестоковую паузу отключается QR1, затем АПВ, включается Q1. В работе W2 (после QR). Защита блокируется.
Для осуществления защиты используются ТТ с одинаковыми коэффициентами трансформации, установленные со стороны общих шин в одноименных фазах. Реле тока КА включается на разность токов двух одноименных фаз сдвоенной линии по схеме с циркулирующими токами.
При удалении точки КЗ (К2) от места установки защиты ток в неповрежденной линии возрастает, а в поврежденной убывает, в следствие чего уменьшается их разница, причем уменьшается так, что при повреждении в близи шин противоположных п/ст (Ip) становится меньше тока срабатывания, при этом защита отказывает в действии.
Длинна участка Lмз при повреждении, в пределах которого защита не работает из – за малой величины Ip – мертвая зона. Согласно ПУЭ Lмз ≤ 10% длины защищаемой линии.
Недостатки:
Защита не защищает сборки сдвоенных линий и шины п/ст
В случае отключения одной из линий защита должна выводиться из действия, т.к. ток срабатывания защиты не отстраивается от тока оставшейся в работе линии.
Наличие мертвой зоны
Не способна определить на какой из линий произошло повреждение и отключает обе линии (можно исправить уставкой АПВ на головном выключателе и отделителе на линии).
Эта защита применяется совместно с МТЗ и другими защитами из-за наличия этих недостатков.